临沂大学
硕士研究生入学考试《材料力学》大纲
科目代码: 807
科目名称: 材料力学
考试时间: 3小时
考试方式: 闭卷,笔试
总 分: 150分
本《材料力学》考试大纲适用于报考临沂大学土木水利专业硕士的研究生入学考试,考试试题主要以孙训方主编的《材料力学(I)(II)(第6版)》(高等教育出版社, 2019年)为蓝本,内容涵盖了该教材的I和II册,但主要以第I册为主,兼顾第II册能量法等内容。具体内容包括材料力学的基本概念,轴向拉伸与压缩,剪切与扭转,弯曲内力,弯曲应力,弯曲变形,截面几何性质,应力和应变分析与强度理论,组合变形,能量法,压杆稳定等部分。要求考生能熟练掌握材料力学的基本理论,具有分析和处理杆件的强度、刚度和稳定性等问题的能力,确保被录取者具有较好的分析和解决工程问题的基本素质。
试卷题型及内容
I.试卷题型结构
计算题(包含作内力图)。
II.试卷内容
轴向拉伸与压缩
剪切与扭转
截面几何性质
弯曲内力和弯曲应力
弯曲变形
应力状态和强度理论
组合变形
压杆稳定
能量法、超静定结构
考试内容
一 基本概念
1. 理解变形固体的基本假设;
2. 掌握内力、应力和变形的概念及杆件变形的基本形式。
二 轴向拉伸和压缩
1. 掌握用截面法计算轴向拉压杆件的内力,会作轴力图;
2. 掌握横截面、斜截面应力分析方法;
3. 掌握轴向拉压杆的强度条件、安全因数及许用应力的确定;
4. 掌握拉压杆的变形计算方法、胡克定律与拉压杆的应变能计算方法;
5. 掌握塑性、脆性材料的拉伸与压缩力学性能及其主要指标;
6. 了解圣维南原理与应力集中概念。
三 截面的几何性质
1. 掌握静矩与形心的定义,组合截面的静矩与形心计算;
2. 掌握惯性矩、惯性积的定义与平行移轴公式,会计算组合截面的惯性矩、惯性积;
3. 了解转轴公式,掌握主轴与主矩的概念和求法。
四 扭转
1. 掌握薄壁圆筒及实心圆轴扭转时的应力分析;
2. 掌握传动轴的外力偶矩计算,会求扭矩及作扭矩图;
3. 掌握剪切胡克定律与切应力互等定理;
4. 掌握扭转应力与变形,强度与刚度的分析计算方法及扭转变形能计算。
五 弯曲内力和弯曲应力
1. 掌握梁的内力计算方法,熟练绘制剪力图、弯矩图;
2. 掌握载荷、剪力、弯矩的关系并用于绘制剪力弯矩图;
3. 了解叠加法作内力图和刚架、曲杆的内力图作法;
4. 掌握纯弯曲下梁横截面正应力建立理论,掌握横力弯曲下正应力的计算与正应力强度条件;
5. 掌握切应力理论的建立与切应力强度条件,了解薄壁截面梁的最大切应力计算;
6. 掌握梁的合理设计及提高弯曲强度措施。
六 梁弯曲时的位移
1. 掌握梁的位移挠度与转角的定义及其相互关系;
2. 了解梁的挠曲线近似微分方程及其积分,掌握积分法求梁的位移;
3. 熟练掌握叠加法求梁的位移;
4. 梁的刚度校核,提高梁的刚度的措施;
5. 梁内的弯曲应变能。
七 简单超静定问题
1. 了解超静结构的特点,掌握超静定问题的概念、判定与基本解法;
2. 掌握拉压、扭转、弯曲一次超静定问题的分析与解法;
3. 了解温度应力、装配应力、支座沉陷等情况的分析计算方法。
八 应力状态与强度理论
1. 掌握平面应力状态分析的解析法和图解法及单元体与应力圆之间的一一对应关系;
2. 掌握主平面、主应力和主方向的概念,了解平面应变分析和空间应力状态,掌握简单空间应力状态的主应力、最大剪应力求法;
3. 掌握广义胡克定律及其应用,了解体应变、体积改变和形状改变比能的概念与计算;
4. 掌握强度理论的建立原理,熟悉工程中常用的4个强度理论及其相当应力表达和适用条件。
九 组合变形及连接部分的计算
1. 掌握组合变形问题的分析方法;
2. 掌握两相互垂直平面内的弯曲,拉伸与弯曲,偏心拉伸,扭转与弯曲等组合变形的应力分析与强度计算,包括危险截面、危险点的位置确定,危险点的应力状态分析,强度理论的选择;
3. 了解截面核心的概念与确定方法;
4. 掌握连接件的实用计算方法。
十 压杆稳定
1. 理解压杆稳定和临界力的概念;
2. 理解两端铰支细长中心受压直杆临界力的建立原理,掌握不同杆端约束下细长压杆临界力、临界应力计算的欧拉公式;
3. 理解柔度的意义和欧拉公式的适用范围,了解临界应力总图;
4. 掌握压杆的稳定校核,掌握提高压杆稳定性的措施。
十一 能量法
1. 理解能量方法的概念,掌握轴向拉压、圆轴扭转、梁的弯曲变形能的计算;熟练运用不计剪力影响的组合变形等直圆杆的应变能表达式;
2. 掌握余能及余能定理的应用;
3. 理解卡氏定理的建立原理,掌握卡氏第一、第二定理求解结构的受力或者变形;
4. 掌握能量法解超静定问题。