集美大学-高等代数-2023年考研大纲

 您现在的位置: 考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文 集美大学-高等代数-2023年考研大纲

考研试卷库
集美大学-高等代数-2023年考研大纲

考试科目代码:[805]

考试科目名称:高等代数

 

一、考核目标

(一)考查考生对高等代数的基本概念、主要理论、重要方法的理解与掌握程度。

(二)考查考生的数学抽象思维、逻辑推理及运算求解能力,提高分析问题、解决问题能力。

 

二、试卷结构

(一)考试时间:180分钟,满分:150分。

(二)题型结构

1、填空题:6小题,每小题5分,共30分。

2、解答题(含证明题):7小题,每小题10-20分,共120分。

 

三、答题方式

  闭卷笔试。

 

四、考试内容

注:以下各章分值为参考分,允许有5分的上下浮动。

 

(一)多项式,20分

考试内容:

整除理论、因式分解理论、根的理论。

考试要求:

(1)理解带余除法、整除、最大公因式、互素、重因式、根等有关结论。

(2)掌握互素的证明、不可约的判别、综合除法、最大公因式、重因式、标准分解式与有理根的求法。

(3)了解矩阵或线性变换的多项式。

(二)行列式与线性方程组,20分

考试内容:

行列式的计算、线性方程组解的理论。

考试要求:

(1)理解行列式概念,掌握行列式的常用计算方法;熟悉行列式与方程组、可逆矩阵、矩阵秩、二次型、特征值等的关系。

(2)理解线性方程组解的求法、判定与结构,掌握含参数线性方程组的讨论与求解,理解齐次方程组的基础解系或解空间与系数矩阵秩的关系。

(三)矩阵,20分

考试内容:

矩阵的运算、矩阵的秩与矩阵的分解、分块矩阵及其初等变换的应用。

考试要求:

(1)掌握矩阵的各种运算、矩阵的秩、可逆矩阵。

(2)理解初等矩阵与初等变换的关系、分块矩阵及其应用,了解矩阵分解。

(3)掌握重要知识点联系及其逆否命题:

元齐次方程组有非零解3A7的列向量组线性相关方阵15C不可逆139方阵15C含有零特征值,等等。

(四)二次型,20分

考试内容:

标准形与规范形、正定问题。

考试要求:

(1)掌握化二次型为标准形或规范形的方法、正定问题的判定与证明。

(2)了解合同、负定、半正定的概念。

(五)线性空间,20分

考试内容:

向量组的线性相关性、基、维数和坐标、子空间的和与直和。

考试要求:

(1)了解线性空间的概念、性质以及同构思想。

(2)理解向量组线性无关的常规证法,基与维数的求法与证明。

(3)掌握子空间直和的证明。

(六)线性变换,20分

考试内容:

线性变换的概念、线性变换的矩阵、相似、特征值特征向量与对角化、值域、核与不变子空间。

考试要求:

(1)了解线性变换与方阵的同构对应关系。

(2)理解线性变换、值域与核、不变子空间的概念。

(3)会求线性变换在基下的矩阵,熟悉相似的概念与性质。

(4)掌握特征值与特征向量的求法与证明,对角化问题的判别与讨论;区别线性变换与方阵的特征向量、对角化问题。

(七)Jordan标准形,10分

考试内容:

最小多项式、Jordan标准形。

考试要求:

(1)了解不变因子、初等因子的求法以及与矩阵相似的关系。

(2)理解最小多项式的概念与基本性质,掌握最小多项式、Jordan标准形的求法与应用。

(八)欧氏空间,20分

考试内容:

内积与标准正交基、正交变换和对称变换。

考试要求:

(1)了解欧氏空间、正交补的概念,理解标准正交基的性质及其求法。

(2)理解正交变换和对称变换的主要特征及相关证明,

(3)掌握实对称矩阵的正交相似对角化的计算,利用实对称矩阵性质进一步讨论正定问题。

 

五、主要参考书目

(一)《高等代数》,王萼芳、石生明,高等教育出版社,2013年(修订),第四版。

(二)《高等代数导教导学导考》,徐仲等,西北工业大学出版社,2004版。

考博咨询QQ 135255883 考研咨询QQ 33455802 邮箱:customer_service@kaoboinfo.com
考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!