2018年辽宁师范大学高等代数考研大纲
文章搜索   高级搜索   
考研试卷库

考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文  2018年辽宁师范大学高等代数考研大纲

新闻资讯
普通文章 上海理工大学各学院博士生导师联系方式
普通文章 上海师范大学2018年录取研究生学费标准
普通文章 北京航空航天大学2002-2016年硕士博士研
普通文章 南开大学张文忠教授简介
普通文章 南开大学阎国栋教授简介
普通文章 南开大学王新新教授简介
普通文章 南开大学王丽丹教授简介
普通文章 南开大学王宏印教授简介
普通文章 南开大学王传英教授简介
普通文章 南开大学苏立昌教授简介
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信

2018年辽宁师范大学高等代数考研大纲

2018 年辽宁师范大学数学学院研究生
考试大纲
《高等代数》考试大纲
注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。
第一部分一元多项式理论
一、考核知识点
1、一元多项式
2、整除性与最大公因式
3、因式分解
4、复系数,实系数,有理系数多项式
二、考核要求
(一)一元多项式
1、熟练掌握:一元多项式及相关概念。
2、深刻理解:多项式的运算及与次数的关系。
3、简单应用:多项式的运算。
(二)整除性与最大公因式
1、熟练掌握:(1)多项式和整除及相关概念。(2)最大公因式及相关概念。
2、深刻理解:(1)整除的性质。(2)带余除法。(3)辗转除法。(4)最大
公因式的性质。(5)互素的性质。
3、简单应用:(1)掌握带余除法。(2)计算最大公因式。(3)使用整除性
质,最大公因式的性质,互素的性质处理多项式问题。
(三)因式分解
1、熟练掌握:(1)不可约多项式概念。(2)最小公倍式概念。(3)重因式,
根,重根等概念。
2、深刻理解:(1)唯一分解定理。(2)不可约多项式的性质。(3)导数与
重因式的关系。(4)次数与根的个数的关系。
3、简单应用:利用因式分解理论处理多项式的相关问题。
(四)复系数,实系数,有理系数多项式
1、熟练掌握:(1)复系数,实系数不可约多项式及因式分解定理。(2)本
原多项式。
2、深刻理解:(1)实系数多项式虚根特征。(2)本原多项式性质。(3)有
理系数多项与整系数多项式在可约性上的关系。(4)艾森斯坦因判别法。(5)综
合除法。(6)有理系数多项式的有理根的判定。
3、简单应用:应用复系数,实系数,有理系数多项式理论处理相关问题。
第二部分行列式
一、考核知识点
1、映射与变换
2、置换的奇偶性
3、行列式
4、克拉默法则
二、考核要求
(一)映射与变换
1、熟练掌握:映射,变换及相关概念。
2、深刻理解:映射的合成及运算律。
3、简单应用:判断具体映射的可逆性。
(二)置换的奇偶性
1、熟练掌握:置换奇偶性概念。
2、深刻理解:置换的表示方法。
3、简单应用:置换的运算,分解。
(三)行列式
1、熟练掌握:行列式的定义及相关概念。
2、深刻理解:行列式的性质。
3、简单应用:行列式的计算。
4、理 解:行列式的几何意义。
(四)克拉默法则
1、熟练掌握:克拉默法则内容。
2、深刻理解:克拉默法则的思想与证明。
3、简单应用:利用克拉默法则解线性方程组。
第三部分线性方程组与线性子空间
一、考核知识点
1、消元法
2、向量组的线性相关性
3、线性子空间
二、考核要求
(一)消元法
1、熟练掌握:(1)矩阵。(2)初等变换。(3)线性方程组的有关概念。
2、深刻理解:消元法的全过程。
3、简单应用:解线性方程组。
(二)向量组的线性相关性
1、熟练掌握:线性表示,线性相关,线性无关等基本概念。
2、深刻理解:线性相关性的相应结论。
3、简单应用:判定向量组的线性相关性。
(三)线性子空间
1、熟练掌握:(1)线性子空间。(2)基与维数。
2、深刻理解:基对子空间的意义。
3、简单应用:(1)判定是否子空间。(2)确定基和维数。
第四部分矩阵
一、考核知识点
1、向量组与矩阵的秩
2、线性映射及矩阵
3、矩阵乘积的行列式与矩阵的逆
4、矩阵分块
5、初等矩阵
二、考核要求
(一)向量组与矩阵的秩
1、熟练掌握:(1)向量组的线性表示,等价,极大无关组,秩等概念。(2)
矩阵的行秩,列秩,子式,秩等概念。
2、深刻理解:(1)与向量组的秩相关的一些结论。(2)与矩阵的秩相关的
一些结论。
3、简单应用:(1)求向量组的极大无关组。(2)求向量组和矩阵的秩。(3)
利用矩阵的秩判断线性方程组解的状况。
(二)矩阵乘积的行列式与矩阵的逆
1、熟练掌握:(1)退化,非退化,可逆,非可逆,伴随等关于矩阵的概念。
(2)可逆矩阵的求逆公式。(3)关系式:|AB|=|A||B|。
2、深刻理解:矩阵可逆与线性变换可逆性的关系。
3、简单应用:计算可逆矩阵的逆矩阵。
(三)矩阵的分块
1、熟练掌握:(1)矩阵分块的概念。(2)分块对角矩阵的概念。
2、深刻理解:矩阵运算对分块的要求。
3、简单应用:(1)对矩阵进行分块运算。(2)分块矩阵的运算。
(四)初等矩阵
1、熟练掌握:初等方阵的定义。
2、深刻理解:初等矩阵与初等变换的关系。
3、简单应用:(1)化矩阵为正规形。(2)用初等变换求可逆矩阵的逆矩阵。
第五部分线性空间与欧几里得空间
一、考核知识点
1、线性空间
2、欧几里得空间
二、考核要求
(一)线性空间
1、熟练掌握:(1)线性空间定义及性质。(2)子空间的和与直和的定义。
(3)维数定理。(4)同构。
2、深刻理解:(1)线性空间定义中的八条公理。(2)直和的判定条件。
(3)简单应用:判断子空间的和是直和。
(二)欧几里得空间
1、熟练掌握:(1)欧几里得空间及其相关概念。(2)正交变换及正交矩阵
的概念。
2、深刻理解:(1)施密特正交化方法。(2)正交变换的判定条件和性质。
(3)正交矩阵的判定条件和性质。
3、简单应用:(1)把线性无关向量变为标准正交向量组。(2)判断线性变
换的正交性。(3)判断矩阵的正交性。(4)掌握欧氏空间中向量的度量性质。
第六部分线性变换
一、考核知识点
1、线性空间的基变换
2、线性变换的矩阵的化简
二、考核要求
(一)线性空间的基变换
1、熟练掌握:过渡矩阵,相似矩阵的概念。
2、深刻理解:基变换对坐标的影响和对线性变换矩阵的影响。
3、简单应用:(1)正确使用坐标变换公式。(2)掌握线性变换的矩阵受基
变换的影响。
(二)线性映射及矩阵
1、熟练掌握:(1)线性映射。(2)线性映射的运算。(3)矩阵的运算。
2、深刻理解:(1)线性映射及矩阵的运算规律。(2)线性映射与矩阵的对
应关系。
3、简单应用:(1)线性映射的运算和矩阵的运算。(2)处理相关矩阵的某
些问题。
(三)线性变换矩阵的化简
1、熟练掌握:特征值,特征向量,特征多项式,不变子空间,特征子空间
等概念。
2、深刻理解:线性变换的矩阵的化简思想与方法。
3、简单应用:(1)判断具体线性变换是否可以对角化。(2)处理有关特征
值,特征向量,不变子空间的一些问题。
第七部分二次型
一、考核知识点
1、二次型基本性质
2、二次型的标准形
3、正定二次型
二、考核要求
1、熟练掌握:二次型及相关概念。
2、深刻理解:二次型的化简。
3、简单应用:(1)化二次型为标准形。(2)判断具体实二次型的正定性。
第八部分多项式矩阵
一、考核知识点
1、多项式矩阵
2、若尔当典范形理论
二、考核要求
(一)多项式矩阵
1、熟练掌握:(1)多项式矩阵。(2)初等变换与初等多项式矩阵。(3)多
项式矩阵的正规形。
2、深刻理解:初等多项式矩阵的意义。
3、简单应用:化多项式矩阵为正规形。
(二)若尔当典范形理论
1、熟练掌握:(1)行列式因子。(2)不变因子。(3)初等因子。
2、深刻理解:(1)行列式因子,不变因子,初等因子之间的关系。(2)矩
阵相似的判定条件。
3、简单应用:化矩阵为若尔当典范形。

  • 上一篇文章:

  • 下一篇文章:
  •  

    考博咨询QQ 135255883 点击这里给我发消息 考研咨询QQ 33455802 点击这里给我发消息 邮箱:customer_service@kaoboinfo.com
    考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!