2017年辽宁师范大学数学学院2017考研大纲
1 数学学院 2017 年研究生考试大纲 2 《高等代数》考试大纲 注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。 第一部分 一元多项式理论 一、考核知识点 1、一元多项式 2、整除性与最大公因式 3、因式分解 4、复系数,实系数,有理系数多项式 二、考核要求 (一)一元多项式 1、熟练掌握:一元多项式及相关概念。 2、深刻理解:多项式的运算及与次数的关系。 3、简单应用:多项式的运算。 (二)整除性与最大公因式 1、熟练掌握:(1)多项式和整除及相关概念。(2)最大公因式及相关概念。 2、深刻理解:(1)整除的性质。(2)带余除法。(3)辗 转除法。(4)最 大公因式的性质。(5)互素的性质。 3、简单应用:(1)掌握带余除法。(2)计算最大公因式。(3)使用整除性 质,最大公因式的性质,互素的性质处理多项式问题。 (三)因式分解 1、熟练掌握:(1)不可约多项式概念。(2)最小公倍式概念。(3)重因式, 根,重根等概念。 2、深刻理解:(1)唯一分解定理。(2)不可约多项式的性质。(3)导数与 重因式的关系。(4)次数与根的个数的关系。 3、简单应用:利用因式分解理论处理多项式的相关问题。 (四)复系数,实系数,有理系数多项式 1、熟练掌握:(1)复系数,实系数不可约多项式及因式分解定理。(2)本 原多项式。 2、深刻理解:(1)实系数多项式虚根特征。(2)本原多项式性质。(3)有 3 理系数多项与整系数多项式在可约性上的关系。(4)艾森斯坦因判别法。(5)综 合除法。(6)有理系数多项式的有理根的判定。 3、简单应用:应用复系数,实系数,有理系数多项式理论处理相关问题。 第二部分 行列式 一、考核知识点 1、映射与变换 2、置换的奇偶性 3、行列式 4、克拉默法则 二、考核要求 (一)映射与变换 1、熟练掌握:映射,变换及相关概念。 2、深刻理解:映射的合成及运算律。 3、简单应用:判断具体映射的可逆性。 (二)置换的奇偶性 1、熟练掌握:置换奇偶性概念。 2、深刻理解:置换的表示方法。 3、简单应用:置换的运算,分解。 (三)行列式 1、熟练掌握:行列式的定义及相关概念。 2、深刻理解:行列式的性质。 3、简单应用:行列式的计算。 4、理 解:行列式的几何意义。 (四)克拉默法则 1、熟练掌握:克拉默法则内容。 2、深刻理解:克拉默法则的思想与证明。 3、简单应用:利用克拉默法则解线性方程组。 第三部分 线性方程组与线性子空间 一、考核知识点 4 1、消元法 2、向量组的线性相关性 3、线性子空间 二、考核要求 (一)消元法 1、熟练掌握:(1)矩阵。(2)初等变换。(3)线性方程组的有关概念。 2、深刻理解:消元法的全过程。 3、简单应用:解线性方程组。 (二)向量组的线性相关性 1、熟练掌握:线性表示,线性相关,线性无关等基本概念。 2、深刻理解:线性相关性的相应结论。 3、简单应用:判定向量组的线性相关性。 (三)线性子空间 1、熟练掌握:(1)线性子空间。(2)基与维数。 2、深刻理解:基对子空间的意义。 3、简单应用:(1)判定是否子空间。(2)确定基和维数。 第四部分 矩阵 一、考核知识点 1、向量组与矩阵的秩 2、线性映射及矩阵 3、矩阵乘积的行列式与矩阵的逆 4、矩阵分块 5、初等矩阵 二、考核要求 (一)向量组与矩阵的秩 1、熟练掌握:(1)向量组的线性表示,等价,极大无关组,秩等概念。(2) 矩阵的行秩,列秩,子式,秩等概念。 2、深刻理解:(1)与向量组的秩相关的一些结论。(2)与矩阵的秩相关的 一些结论。 5 3、简单应用:(1)求向量组的极大无关组。(2)求向量组和矩阵的秩。(3) 利用矩阵的秩判断线性方程组解的状况。 (二)矩阵乘积的行列式与矩阵的逆 1、熟练掌握:(1)退化,非退化,可逆,非可逆,伴随等关于矩阵的概念。 (2)可逆矩阵的求逆公式。(3)关系式:|AB|=|A||B|。 2、深刻理解:矩阵可逆与线性变换可逆性的关系。 3、简单应用:计算可逆矩阵的逆矩阵。 (三)矩阵的分块 1、熟练掌握:(1)矩阵分块的概念。(2)分块对角矩阵的概念。 2、深刻理解:矩阵运算对分块的要求。 3、简单应用:(1)对矩阵进行分块运算。(2)分块矩阵的运算。 (四)初等矩阵 1、熟练掌握:初等方阵的定义。 2、深刻理解:初等矩阵与初等变换的关系。 3、简单应用:(1)化矩阵为正规形。(2)用初等变换求可逆矩阵的逆矩阵。 第五部分 线性空间与欧几里得空间 一、考核知识点 1、线性空间 2、欧几里得空间 二、考核要求 (一)线性空间 1、熟练掌握:(1)线性空间定义及性质。(2)子空间的和与直和的定义。 (3)维数定理。(4)同构。 2、深刻理解:(1)线性空间定义中的八条公理。(2)直和的判定条件。 (3)简单应用:判断子空间的和是直和。 (二)欧几里得空间 1、熟练掌握:(1)欧几里得空间及其相关概念。(2)正交变换及正交矩阵 的概念。 6 2、深刻理解:(1)施密特正交化方法。(2)正交变换的判定条件和性质。 (3)正交矩阵的判定条件和性质。 3、简单应用:(1)把线性无关向量变为标准正交向量组。(2)判断线性变 换的正交性。(3)判断矩阵的正交性。(4)掌握欧氏空间中向量的度量性质。 第六部分 线性变换 一、考核知识点 1、线性空间的基变换 2、线性变换的矩阵的化简 二、考核要求 (一)线性空间的基变换 1、熟练掌握:过渡矩阵,相似矩阵的概念。 2、深刻理解:基变换对坐标的影响和对线性变换矩阵的影响。 3、简单应用:(1)正确使用坐标变换公式。(2)掌握线性变换的矩阵受基 变换的影响。 (二)线性映射及矩阵 1、熟练掌握:(1)线性映射。(2)线性映射的运算。(3)矩阵的运算。 2、深刻理解:(1)线性映射及矩阵的运算规律。(2)线性映射与矩阵的对 应关系。 3、简单应用:(1)线性映射的运算和矩阵的运算。(2)处理相关矩阵的某 些问题。 (三)线性变换矩阵的化简 1、熟练掌握:特征值,特征向量,特征多项式,不变子空间,特征子空间 等概念。 2、深刻理解:线性变换的矩阵的化简思想与方法。 3、简单应用:(1)判断具体线性变换是否可以对角化。(2)处理有关特征 值,特征向量,不变子空间的一些问题。 第七部分 二次型 一、考核知识点 1、二次型基本性质 7 2、二次型的标准形 3、正定二次型 二、考核要求 1、熟练掌握:二次型及相关概念。 2、深刻理解:二次型的化简。 3、简单应用:(1)化二次型为标准形。(2)判断具体实二次型的正定性。 第八部分 多项式矩阵 一、考核知识点 1、多项式矩阵 2、若尔当典范形理论 二、考核要求 (一)多项式矩阵 1、熟练掌握:(1)多项式矩阵。(2)初等变换与初等多项式矩阵。(3)多 项式矩阵的正规形。 2、深刻理解:初等多项式矩阵的意义。 3、简单应用:化多项式矩阵为正规形。 (二)若尔当典范形理论 1、熟练掌握:(1)行列式因子。(2)不变因子。(3)初等因子。 2、深刻理解:(1)行列式因子,不变因子,初等因子之间的关系。(2)矩 阵相似的判定条件。 3、简单应用:化矩阵为若尔当典范形。 8 《数学分析》考试大纲(学术型) 注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。 第一章 实数集与函数 一.考核知识点 1.实数集的性质 2.确界定义和确界原理 3.函数的概念及表示法,基本初等函数的性质及其图形,初等函数 二.考核要求 (一) 实数集的性质 1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。 2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德 性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2) 绝对值的定义及性质。 3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2) 会利用绝对值的性质证明简单的不等式。 4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解 简单的不等式。 (二)确界定义和确界原理 1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。 2.深刻理解:(1)区间与邻域的定义及表示法;(2)确界的定义及确界 原理。 3.简单应用:会用区间表示不等式的解,会证明数集的的有界性,会求数 集的上、下确界。 4.综合应用:会用确界的定义证明某个实数是某数集的上确界(或下确界), 证明某数集无界。 (三)函数的概念 1.熟练掌握:(1)函数的定义;(2)函数的表示法;(3)函数的四则 运算;(4)复合函数;(5)反函数;(6)初等函数。 2.深刻理解:(1)函数概念的两大要素;(2)掌握整数部分函数,小数 9 部分函数,符号函数,狄利克雷和黎曼函数;(3)函数能够进行四则运算的条 件;(4)复合函数中内函数的值域与外函数的定义域的关系;(5)反函数存在 的条件。 3.简单应用:会求函数的定义域、值域,比较几个函数的大小,会求分段 函数和复合函数的表达式,能熟练地描绘六类基本初等函数的图象。 4.综合应用:能作简单的复合函数的图象,会求函数的反函数,证明有关 的不等式,会建立简单应用问题的函数关系。 (四)具有某些特性的函数 1.熟练掌握:(1)有界函数;(2)单调函数;(3)奇函数和偶函数; (4)周期函数。 2.深刻理解:(1)有界函数和无界函数的定义;(2)单调函数的定义及 其图象的性质;(3)奇函数和偶函数的定义及其图象的性质;(4)周期函数的 定义及其图象的性质。 3.简单应用:(1)会求函数的上下界,会判断函数无界;(2)会判断函 数的单调性;(3)会判断周期函数及求周期;(4)会判断函数的奇偶性。 4.综合应用:能利用函数的各种特性解决简单的应用问题。 第二章 数列极限 一.考核知识点 1.数列极限的定义 2.收敛数列的性质 3.数列极限存在的条件 二.考核要求 (一) 数列极限的定义 1.熟练掌握:数列的敛散性概念,数列极限的 N 定义,数列极限的几 何意义。 2.深刻理解:数列极限的“ N 定义”的逻辑结构,深刻理解 的任意 性, N 的相应性;用“ N 定义”证明数列的极限的表述方法; “ N 定 义”的否定说法。 3.简单应用:能够通过观察法初步判断数列的敛散性。 10 4.综合应用:会用“ N 语言”证明数列的极限存在。 (二) 收敛数列的性质 1.熟练掌握:收敛数列极限的唯一性,有界性,保号性,保不等式性,迫 敛性,数列极限的四则运算法则,数列子列的概念。 2.深刻理解:收敛数列诸性质的证明。 3.简单应用:运用收敛数列的四则运算法则计算数列的极限。 4.综合应用:运用收敛数列诸性质证明和判断各种数列问题。 (三) 数列极限存在的条件 1.熟练掌握:(1)单调有界原理;(2)柯西收敛准则。 2.深刻理解:单调有界原理和柯西收敛准则的实质及其否定命题。 3.简单应用:会用单调有界原理证明某些极限的存在性。 4.综合应用:会用单调有界原理和柯西收敛准则证明某些极限问题,会用 柯西收敛准则的否定命题证明数列发散。 第三章 函数极限 一.考核知识点 1.函数极限的定义 2.函数极限的性质 3.函数极限存在的条件 4.两个重要的极限 5.无穷大量与无穷小量 二.考核要求 (一) 函数极限的定义 1.熟练掌握:(1) x 时函数极限的定义;(2) 0 xx 时函数极限的 定义。 2.深刻理解: (1) Axf x )(lim 的“ M ” 定义的逻辑结构,深刻理解 的任意性,M 的相应性;用“ M ” 定义证明函数极限的表述方法; “ M ” 定义的 否定说法。(2) Axf xx )(lim 0 的 “ ” 定义的逻辑结构,深刻理解 的任 11 意性, δ 的相应性;用“ ” 定义证明函数极限的表述方法; 单侧极限和 极限 Axf xx )(lim 0 存在的充要条件;“ ” 定义的否定说法。 3.简单应用:会用“ Axf x )(lim 的“ M ” 定义和“ Axf xx )(lim 0 的 “ M ” 定义证明简单函数的极限。 4.综合应用:会用函数极限等分析语言证明一般的函数极限问题;用极限 存在的充要条件证明极限不存在。 (二)函数极限的性质 1.熟练掌握:函数极限的唯一性、函数的局部有界性、局部保号性、保不 等式性,函数极限的迫敛性和函数极限的四则运算法则。 2.深刻理解:函数极限诸性质的证明。 3.简单应用:运用函数极限的四则运算法则计算函数的极限。 4.综合应用:运用函数极限的唯一性,局部有界性、局部保号性,函数极 限的迫敛性等证明函数的各种性质。 (三) 函数极限存在的条件 1.熟练掌握:(1)归结原则;(2)柯西收敛准则。 2.深刻理解:归结原则和柯西收敛准则的实质。 3.简单应用:会用归结原则证明函数的极限不存在,用柯西收敛准则证明 函数极限存在。 4.综合应用:用柯西收敛准则的否定命题证明函数极限不存在。 (四) 两个重要的极限 1.熟练掌握: e xx x x xx ) 1 1(lim,1 sin lim 0 。 2.深刻理解:两个重要极限的证明。 3.简单应用:利用两个重要极限求极限的方法。 4.综合应用:综合用利用归结原则和两个重要极限求极限的方法。 (五) 无穷小量与无穷大量 1.熟练掌握:无穷小量,无穷大量的概念。 2.深刻理解:无穷小量和无穷大量的性质和关系,无穷小量阶的比较。 3.简单应用:无穷小量阶的比较方法,用无穷小量和无穷大量求极限。 12 4.综合应用:会用等价无穷小求极限,会求曲线的渐近线。 第四章 函数的连续性 一.考核知识点 1.连续性概念 2.连续函数的性质 3.初等函数的连续性 二.考核要求 (一) 连续性概念 1.熟练掌握:函数在一点的连续性,区间上的连续函数,间断点及其分类。 2.深刻理解:函数在一点左、右连续的概念,函数在一点的连续的充要条 件。 3.简单应用:用定义证明函数在一点连续。 4.综合应用:利用函数在一点的连续的充要条件证明函数在一点连续。 (二) 连续函数的性质 1.熟练掌握:连续函数的局部性质,闭区间上连续函数的基本性质,反函 数的连续性,复合函数的连续性。 2.深刻理解:一致连续性。 3.简单应用:用连续函数求极限。 4.综合应用:会证明函数的一致连续性和非一致连续性,能利用闭区间上 连续函数的基本性质论证某些问题。 (三) 初等函数的连续性 1.熟练掌握:基本初等函数的连续性。 2.深刻理解:初等函数在其定义的区间内连续。 3.简单应用:证明基本初等函数在定义域内连续,判断初等函数间断点的 类型。 4.综合应用:证明一般初等函数在定义域内连续,判断分段函数间断点的 类型。 第五章 导数与微分 一.考核知识点 13 1.导数的概念 2.求导法则 3.参变量函数的导数 4.高阶导数 5.微分 二.考核要求 (一) 导数的概念 1.熟练掌握:导数的定义,导函数。 2.深刻理解:函数在一点的变化率,左、右导数,导数的几何意义,导函 数的介值性,函数可导与连续的关系。 3.简单应用:会求函数的平均变化率,会求曲线切线和法线方程。 4.综合应用:会求分段函数的导数,能运用导数概念证明曲线的某些几何 性质。 (二)求导法则 1.熟练掌握:导数的四则运算,反函数的导数,复合导数的导数,基本求 导法则与公式。 2.深刻理解:导数的四则运算、反函数的导数、复合导数的导数、基本求 导法则与公式的证明。 3.简单应用:会用各种求导法则计算初等函数的导数。 4.综合应用:能综合运用各种求导法则计算函数的导数。 (二)参变量函数的导数 1.熟练掌握:参变量函数的导数的定义。 2.深刻理解:参变量函数的导数的几何意义。 3.简单应用:会求参变量函数所确定函数的导数。 4.综合应用:能利用参变量函数的导数证明曲线的某些几何性质。 (三)高阶导数 1.熟练掌握:高阶导数的定义。 2.深刻理解:高阶导函数的概念。 3.简单应用:会求简单函数的高阶导数。 14 4.综合应用:能利用莱布尼茨公式计算高阶导数,计算参变量函数的高阶 导数。 (四)微分 1.熟练掌握:微分概念。 2.深刻理解:微分的几何意义,导数与微分的关系,一阶微分形式的不变 性。 3.简单应用:会计算函数的微分。 4.综合应用:会计算函数的高阶微分及微分在近似计算中的应用。 第六章 微分中值定理及其应用 一.考核知识点 1.拉格朗日定理和函数单调性 2.柯西中值定理和不定式极限 3.泰勒公式 4.函数的极值与最大值、最小值 5.函数的凸性与拐点,函数图象的讨论 二.考核要求 (一) 拉格朗日定理和函数单调性 1.熟练掌握:罗尔中值定理,拉格朗日中值定理,函数单调性。 2.深刻理解:罗尔中值定理和拉格朗日中值定理的条件与结论、证明方法, 它们的几何意义。 3.简单应用:判断函数是否满足罗尔中值定理和拉格朗日中值定理,会求 简单函数的中值点。 4.综合应用:用拉格朗日中值定理证明函数的单调性,利用拉格朗日中值 定理和函数的单调性,证明某些恒等式和不等式。 (二)柯西中值定理和不定式极限 1.熟练掌握:柯西中值定理, 不定式的极限。 2.深刻理解:柯西中值定理的证明方法,求不定式极限的方法。 3.简单应用:会求7种不定式的极限。 4.综合应用:能用柯西中值定理证明某些带中值的等式。 15 (三)泰勒公式 1.熟练掌握:泰勒定理,泰勒公式,麦克劳林公式。 2.深刻理解:泰勒定理的实质,泰勒公式与拉格朗日中值定理的关系。 3.简单应用:利用泰勒定理展开六种函数的麦克劳林公式,余项估计。 4.综合应用:利用泰勒公式和等价无穷小变换计算极限,泰勒公式在近似 计算上的应用。 (四)函数的极值与最大〔小〕值 1.熟练掌握:函数的极值与最大〔小〕值,取极值的必要条件,驻点。 2.深刻理解:判断极值的两个充分条件。 3.简单应用:会求函数极值与最大〔小〕值。 4.综合应用:证明某些不等式,解决求最大〔小〕值的应用问题。 (五)函数的凸性与拐点,函数图象的讨论 1.熟练掌握:函数图象的凸性与拐点,函数图象的性态。 2.深刻理解:凸函数,函数为凸函数的充要条件,曲线的渐近线。 3.简单应用:会判断函数图象的凸性与拐点,会求曲线的渐近线,能描绘 简单函数的图象。 4.综合应用:能利用函数的凸性证明不等式。 第七章 实数的完备性 一.考核知识点 1. 关于实数集完备性的基本定理 2.闭区间上连续函数性质的证明 3.上极限和下极限 二.考核要求 (一)关于实数集完备性的基本定理 1.熟练掌握:实数集完备性的意义,实数集完备性的几个基本定理。 2.深刻理解:确界原理、柯西收敛准则、区间套定理、聚点定理、致密性 定理、有限覆盖定理的条件和结论,它们的证明方法,理解有理数集不满足完备 性定理的原因。 3.简单应用:会求数集的聚点、确界。能应用区间套定理解决简单的证明 16 问题。 4.综合应用:能完成实数集完备性的几个基本定理的等价性证明。 (二)闭区间上连续函数性质的证明 1.熟练掌握:闭区间上连续函数的有界性,有最大、最小值性,介值性和 一致连续性。 2.深刻理解:闭区间上连续函数性质的证明思路和方法。 第八章 不定积分 一.考核知识点 1.不定积分概念与基本积分公式 2.换元积分法与分部积分法 3.有理函数和可化为有理函数的不定积分 二.考核要求 (一)不定积分概念与基本积分公式 1.熟练掌握:原函数、不定积分及二者的区别,基本积分表。 2.深刻理解:原函数与导数的关系,不定积分的基本性质,不定积分的几 何意义。 3.简单应用:会求简单初等函数的不定积分。 4.综合应用:根据不定积分的几何意义求曲线方程。 (二)换元积分法与分部积分法 1.熟练掌握:换元积分法,分部积分法。 2.深刻理解:换元积分法与复合函数求导法则的关系,分部积分法与乘积 求导法的关系。 3.简单应用:会用换元积分法与分部积分法计算简单函数的不定积分。 4.综合应用:能综合运用换元积分法与分部积分法计算某些函数的不定积 分,证明某些递推公式。 (三)有理函数和可化为有理函数的不定积分 1.熟练掌握:有理函数、三角函数有理式和某些无理函数的不定积分。 2.深刻理解:以上各种不定积分的计算步骤。 3.应用:会计算有理函数、三角函数有理式和某些无理函数的不定积分。 17 第九章 定积分 一.考核知识点 1.定积分概念和性质 2.可积条件 3.微积分学基本定理·定积分的计算 二.考核要求 (一)定积分概念和性质 1.熟练掌握:定积分的实际背景,黎曼积分和,定积分的性质。 2.深刻理解:构造积分和的方法,定积分及其性质的几何意义。 3.简单应用:会用定积分定义计算简单函数的定积分,能利用定积分的性 质比较积分的大小,估计积分值。 4.综合应用:会用定积分定义计算某些复杂和式的极限,利用定积分的性 质证明不等式,论证函数的某些性质。 (二) 可积条件 1.熟练掌握:可积的必要条件和充分条件,可积函数类。 2.深刻理解:达布和,可积准则及其证明方法。 3.简单应用:能判断函数的可积性。 4.综合应用:能论证可积函数的某些性质。 (三)微积分学基本定理和定积分的计算 1.熟练掌握:变上限定积分所确定的函数及其性质,微积分学基本定理。 2.深刻理解:微积分学基本定理的实质,原函数的存在性。 3.简单应用:会用牛顿—莱布尼茨公式计算定积分,会用换元积分法与分 部积分法计算定积分。 4.综合应用:能综合运用各种方法计算定积分。 第十章 定积分的应用 一.考核知识点:平面图形的面积,由平行截面面积求体积,平面曲线的弧 长与曲率,旋转曲面的面积,定积分在物理中的某些应用 二.考核要求 1.熟练掌握: 用定积分表达和计算一些几何量和物理量。 18 2.深刻理解:定积分的应用的实质—微元法。 3.应用:会计算平面图形的面积,会由平行截面面积求体积,会求平面曲线 的弧长与曲率,旋转曲面的面积,液体静压力、引力、功与平均功率。 第十一章 反常积分 一.考核知识点 1.反常积分概念 2.无穷积分的性质与收敛判别 3.瑕积分的性质与收敛判别 二.考核要求 (一)反常积分概念 1.熟练掌握:两类反常积分的定义。 2.深刻理解:反常积分即变限定积分的极限。 (二)无穷积分的性质与收敛判别 1.熟练掌握:无穷积分的性质,条件收敛,绝对收敛。 2.深刻理解:比较判别法,狄利克雷判别法,阿贝尔判别法。 3.简单应用:会计算无穷积分,判别无穷积分的收敛性。 4.综合应用:会运用无穷积分的性质和判别法论证某些问题。 (三)瑕积分的性质与收敛判别 1.熟练掌握:瑕积分的性质,条件收敛,绝对收敛。 2.深刻理解:比较判别法。 3.简单应用:会计算瑕积分,判别瑕积分的收敛性。 4.综合应用:会能运用瑕积分的性质和判别法论证某些问题。 第十二章 数项级数 一.考核知识点 1.级数的收敛性 2.正项级数和一般项级数 二.考核要求 (一)级数的收敛性 1.熟练掌握:数项级数的定义。 19 2.深刻理解:级数收敛、发散的概念,收敛级数的性质,级数收敛的柯西 准则。 3.简单应用:会判断级数的收敛和发散。 4.综合应用:能应用柯西准则讨论级数的敛散性。 (二) 正项级数 1.熟练掌握:正项级数收敛的必要条件,正项级数的比较原则。 2.深刻理解:正项级数收敛比式判别法,根式判别法和积分判别法。 3.简单应用:会判别正项级数的收敛性。 4.综合应用:能运用正项级数收敛的必要条件,比较原则和几个判别法等 论证一些问题。 (三)一般项级数 1.熟练掌握:交错级数的概念,条件收敛与绝对收敛的概念及关系,莱布 尼茨判别法。 2.深刻理解:绝对收敛级数的性质,狄利克雷判别法,阿贝尔判别法。 3.简单应用:会判别一般项级数的收敛性。 4.综合应用:能进行绝对收敛级数的运算及重排。 第十三章 函数列与函数项级数 一.考核知识点 1.一致收敛性 2.一致收敛函数列与函数项级数的性质 二.考核要求 (一)一致收敛性 1.熟练掌握:函数列与函数项级数的一致收敛性的定义,一致收敛的充要 条件。 2.深刻理解:一致收敛定义的否定叙述,一致收敛的柯西准则,函数列与 函数项级数一致收敛性的判别法 3.应用:会用一致收敛性的定义或判别法判别函数列的一致收敛性,用优 级数判别法,狄利克雷判别法,阿贝尔判别法判别一些函数级数的一致收敛性。 (二)一致收敛函数列与函数项级数的性质 20 1.熟练掌握:一致收敛函数列的极限函数与函数项级数的和函数。 2.深刻理解:连续性,可积性,可微性定理。 3.简单应用:会由定理讨论函数项级数的和函数的连续性,可积性,可微 性。 4.综合应用:会由定理证明和函数的分析性质,计算函数项级数的积分。 第十四章 幂级数 一.考核知识点 1.幂级数 2. 函数的幂级数展开式 二.考核要求 (一)幂级数 1.熟练掌握: 幂级数的定义。 2.深刻理解:幂级数的性质。 3.应用:幂级数的计算,求幂级数的收敛半径。 (二)函数的幂级数展开式 1.熟练掌握:泰勒级数定义。 2.深刻理解:泰勒级数和马克劳林级数。 3.应用:能利用六个常用的初等函数的马克劳林级数展开式,把一些简单 的函数展成泰勒级数或马克劳林级数。 第十五章 傅立叶级数 一.考核知识点 1.傅立叶级数 2.以2L为周期的函数的展开式 二.考核要求 (一)傅立叶级数 1.熟练掌握:傅立叶级数的性质。 2.深刻理解:以2L为周期函数的的傅立叶级数的性质。 3.应用:能利用傅立叶级数收敛定理把函数展开成傅立叶级数。 (二) 以2L为周期的函数的展开式和收敛定理的证明 21 1.熟练掌握:正、余弦函数基本性质。 2.深刻理解:2L为周期的函数的性质。收敛定理及证明。 3.应用:会求以2L为周期的函数的傅立叶级数的展开式。 第十六章 多元函数的极限与连续 一.考核知识点 1.平面点集与多元函数 2.二元函数的极限和连续性 二.考核要求 (一)平面点集与多元函数 1.熟练掌握:二元函数和二元函数极限的定义。弄清二重极限与累次极限 的区别极其联系。 2.深刻理解:平面点集的一些概念:邻域、内点、界点、聚点、开区域、 闭区域、有界区域、无界区域等。完备性定理。 3.简单应用: 会求函数的定义域,画定义域的图形,并会说明是何种点 集。 4.综合应用:会求平面点集的聚点与界点。 (二)二元函数的极限和连续性 1.熟练掌握:二元函数的极限和连续性的概念。 2.深刻理解:累次极限和二元连续函数的性质。 3.简单应用:会求累次极限和二重极限。 4.综合应用:会求函数的极限,会讨论函数的连续性。 第十七章 多元函数微分学 一.考核知识点 1.可微性 2.复合函数微分法 3.方向导数与梯度及泰勒公式与极值问题 二.考核要求 (一)可微性 1.熟练掌握:可微与全微分定义。可微性几何意义及应用。 22 2.深刻理解:可微性条件。 3.应用: 会求函数的偏导数与全微分。 (二) 复合函数微分法 1.熟练掌握:复合函数的有关定义。 2.深刻理解:复合函数的求导法则与复合函数的全微分 3.应用:会求复合函数的偏导数与全微分。 (三)方向导数与梯度及泰勒公式与极值问题 1.熟练掌握:方向导数与梯度的定义。 2.深刻理解:中值定理和极值充分条件。 3.简单应用:会计算方向导数与梯度和高阶偏导数。 4.综合应用:能运用泰勒公式解决极值问题。 第十八章 隐函数定理及其应用 一.考核知识点 1.隐函数及隐函数组 2.几何应用和条件极值 二.考核要求 (一)隐函数及隐函数组 1.熟练掌握:隐函数及隐函数组的概念,反函数组与坐标变换。 2.深刻理解:隐函数定理和隐函数组的定理。 3.简单应用:会求隐函数及隐函数组的偏导数与全微分。 (二) 几何应用和条件极值 1.熟练掌握:平面曲线、空间曲线的切线与法平面,曲面的切平面与法线。 2.深刻理解:条件极值。 3.简单应用:会求平面曲线、空间曲线的切线与法平面,曲面的切平面与 法线。 4.综合应用: 能应用拉格朗日乘数法求函数的条件极值。 第十九章 含参量积分 一.考核知识点 1.含参量正常积分 23 2.含参量反常积分与欧拉积分 二.考核要求 (一)含参量正常积分 1.熟练掌握:含参量积分的定义。 2.深刻理解:含参量积分的连续性、可微性、可积性。 3.应用:能利用先微后积或先积后微方法求解函数的积分问题。 (二)含参量反常积分与欧拉积分 1.熟练掌握:欧拉积分的定义。 2.深刻理解:含参量反常积分的性质。Γ 函数与Β 函数。 3.应用:能证明一致收敛性,会计算Γ 函数与Β 函数。 第二十章 曲线积分 一.考核知识点 1.第一型曲线积分 2.第二型曲线积分 二.考核要求 (一)第一型曲线积分 1.熟练掌握:第一型曲线积分的定义。 2.深刻理解:第一型曲线积分的性质。 3.应用:会计算第一型曲线积分。 (二)第二型曲线积分 1.熟练掌握:第二型曲线积分的定义。 2.深刻理解:第二型曲线积分的性质,第二型曲线积分与第一型曲线积分 的关系。 3.应用:会计算第二型曲线积分。 第二十一章 重积分 一.考核知识点 1.二重积分的概念及直角坐标系下二重积分的计算 2.格林公式•曲线积分与路线的无关性 3.二重积分的变量变换与三重积分 24 4.重积分的应用 二.考核要求 (一) 二重积分的概念及直角坐标系下二重积分的计算 1.熟练掌握:二重积分的概念极其存在性,平面图形的存在性。 2.深刻理解:二重积分的性质。二元函数的可积性定理。 3.应用:会计算直角坐标系下的二重积分及平面图形所围的区域的面积。 (二) 格林公式•曲线积分与路线的无关性 1.熟练掌握:连通区域的概念, 2.深刻理解:格林公式,积分与路线的无关性定理。 3.简单应用:能验证积分与路线无关并会求积分。 4.综合应用:能应用格林公式计算曲线积分。 (三) 二重积分的变量变换与三重积分 1.熟练掌握: 三重积分的概念。 2.深刻理解:二重积分的可积函数类与性质,二重积分的变量变换公式与 化三重积分为累次积分。 3.简单应用:会用极坐标计算二重积分,会三重积分换元法。 4.综合应用:能对积分进行极坐标变换并计算二重积分。计算三重积分及 累次积分。 第二十二章 曲面积分 一.考核知识点 1.第一型曲面积分和第二型曲面积分 2.高斯公式与托克斯公式与场论初步 二.考核要求 (一)第一型曲面积分和第二型曲面积分 1.熟练掌握:第一型曲面积分和第二型曲面积分的定义及二者之间的关系。 2.深刻理解:第一型曲面积分和第二型曲面积分的物理背景。 3.简单应用:会第一型曲面积分和第二型曲面积分的计算。 4.综合应用:会用第一型曲面积分求重心、转动惯量。计算第二型曲面积 分。 25 (二) 高斯公式与托克斯公式与场论初步 1.熟练掌握:高斯公式和斯托克斯公式的物理意义。场的概念。 2.深刻理解:高斯公式和斯托克斯公式及其证明过程,梯度场、散度场、 旋度场。 3.简单应用:会用高斯公式和斯托克斯公式计算曲面积分。 4.综合应用:会求全微分的原函数。 26 《数学分析》考试大纲(专业学位) 注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。 第一章 实数集与函数 一.考核知识点 1.实数集的性质 2.确界定义和确界原理 3.函数的概念及表示法,基本初等函数的性质及其图形,初等函数 二.考核要求 (一) 实数集的性质 1.熟练掌握:(1)实数及其性质;(2)绝对值与不等式。 2.深刻理解:(1)实数有序性,大小关系的传递性,稠密性,阿基米德 性,实数集对四则运算的封闭性以及实数集与数轴上的点的一一对应关系;(2) 绝对值的定义及性质。 3.简单应用:(1)会比较实数的大小,能在数轴上表示不等式的解;(2) 会利用绝对值的性质证明简单的不等式。 4.综合应用:会利用实数的性质和绝对值的性质证明有关的不等式,会解 简单的不等式。 (二)确界定义和确界原理 1.熟练掌握:(1)区间与邻域;(2)有界集、无界集与确界原理。 2.深刻理解:(1)区间与邻域的定义及表示法;(2)确界的定义及确界 原理。 3.简单应用:会用区间表示不等式的解,会证明数集的的有界性,会求数 集的上、下确界。 4.综合应用:会用确界的定义证明某个实数是某数集的上确界(或下确界), 会证明某数集无界。 (三)函数的概念 1.熟练掌握:(1)函数的定义;(2)函数的表示法;(3)函数的四则 运算;(4)复合函数;(5)反函数;(6)初等函数。 2.深刻理解:(1)函数概念的两个要素;(2)绝对值函数,取整函数, 27 符号函数,狄利克雷和黎曼函数;(3)函数能够进行四则运算的条件;(4)复 合函数中内函数的值域与外函数的定义域的关系;(5)反函数存在的条件。 3.简单应用:会求函数的定义域、值域,会比较几个函数的大小,会求分 段函数和复合函数的表达式,能熟练地描绘六类基本初等函数的图象。 4.综合应用:会作简单的复合函数的图象,会求函数的反函数,并证明有 关的不等式,会建立简单应用问题的函数关系。 (四)具有某些特性的函数 1.熟练掌握:(1)有界函数;(2)单调函数;(3)奇函数和偶函数; (4)周期函数。 2.深刻理解:(1)有界函数和无界函数的定义;(2)单调函数的定义及 其图象的性质;(3)奇函数和偶函数的定义及其图象的性质;(4)周期函数的 定义及其图象的性质。。 3.简单应用:(1)会求函数的上下界,判断无界函数;(2)会判断函数 的单调性;(3)会判断周期函数;(4)会判断函数的奇偶性。 4.综合应用:能利用函数的各种特性解决简单的应用问题。 第二章 数列极限 一.考核知识点 1.数列极限的定义 2.收敛数列的性质 3.数列极限存在的条件 二.考核要求 (一) 数列极限的定义 1.熟练掌握:数列的敛散性概念,数列极限的“ N ”定义,数列极限 的几何意义。 2.深刻理解:数列极限的“ N ” 定义的逻辑结构,深刻理解 的任意 性, N 的相应性;用“ N ” 定义证明数列的极限的表述方法; “ N ” 定义的否定说法。 3.简单应用:能够通过观察法初步判断数列的敛散性。 4.综合应用:会用“ N ” 语言证明数列的极限存在。 28 (二) 收敛数列的性质 1.熟练掌握:收敛数列极限的唯一性,有界性,保号性,保不等式性,迫 敛性,数列极限的四则运算法则,数列子列的概念。 2.深刻理解:收敛数列诸性质的证明。 3.简单应用:运用收敛数列的四则运算法则计算数列的极限。 4.综合应用:运用数列极限的唯一性,收敛数列的有界性、保号性,数列 极限的迫敛性等证明数列的各种性质,判断发散数列。 (三) 数列极限存在的条件 1.熟练掌握:(1)单调有界原理;(2)柯西收敛准则。 2.深刻理解:单调有界原理和柯西收敛准则的实质及其否定命题。 3.简单应用:会用单调有界原理证明某些极限的存在性。 4.综合应用:会用单调有界原理和柯西收敛准则证明某些极限问题,会用 柯西收敛准则的否定命题证明数列发散。 第三章 函数极限 一.考核知识点 1.函数极限的定义 2.函数极限的性质 3.函数极限存在的条件 4.两个重要的极限 5.无穷大量与无穷小量 二.考核要求 (一) 函数极限的定义 1.熟练掌握:(1) x 时函数极限的定义;(2) 0 xx 时函数极限的 定义。 2.深刻理解: (1) Axf x )(lim 的 “ M ” 定义的逻辑结构,深刻理解 的任意性, M 的相应性;用“ M ” 定义证明函数极限的表述方法; “ M ” 定义 的否定说法。(2) Axf xx )(lim 0 的 “ε -δ ” 定义的逻辑结构,深刻理解 的 29 任意性, δ 的相应性;用“ε -δ ” 定义证明函数极限的表述方法; 单侧极限 和极限 Axf xx )(lim 0 存在的充要条件;“ε -δ ” 定义的否定说法。 3.简单应用:会用 Axf x )(lim 的“ M ”定义 和 Axf xx )(lim 0 的“ε -δ ” 定义证明简单函数的极限。 4.综合应用:会用函数极限定义等分析语言证明一般的函数极限问题;用 极限存在的充要条件证明极限不存在。 (二)函数极限的性质 1.熟练掌握:函数极限的唯一性,局部有界性、局部保号性、保不等式性, 函数极限的迫敛性,函数极限的四则运算法则。 2.深刻理解:函数极限诸性质的证明。 3.简单应用:能运用函数极限的四则运算法则计算函数的极限。 4.综合应用:能运用函数极限的唯一性,局部有界性、局部保号性,函数 极限的迫敛性等证明函数的各种性质。 (三) 函数极限存在的条件 1.熟练掌握:(1)归结原则;(2)柯西收敛准则。 2.深刻理解:归结原则和柯西收敛的实质。 3.简单应用:会用归结原则证明函数的极限不存在,用柯西收敛准则证明 函数极限存在。 4.综合应用:能用柯西收敛准则的否定命题证明函数极限不存在。 (四) 两个重要的极限 1.熟练掌握: e xx x x xx 1 1lim,1 sin lim 0 。 2.深刻理解:两个重要极限的证明。 3.简单应用:会利用两个重要极限求函数的极限。 4.综合应用:能综合用利用归结原则和两个重要极限求解极限问题。 (五) 无穷小量与无穷大量 1.熟练掌握:无穷小量,无穷大量。 2.深刻理解:无穷小量和无穷大量的性质和关系,无穷小量阶的比较。 3.简单应用:会用无穷小量和无穷大量求极限。 30 4.综合应用:会用等价无穷小求极限,求曲线的渐近线。 第四章 函数的连续性 一.考核知识点 1.连续性概念 2.连续函数的性质 3.初等函数的连续性 二.考核要求 (一) 连续性概念 1.熟练掌握:函数在一点的连续性,区间上的连续函数,间断点及其分类。 2.深刻理解:函数在一点左、右连续的概念,函数在一点的连续的充要条 件。 3.简单应用:会用定义证明函数在一点连续。 4.综合应用:能利用函数在一点的连续的充要条件证明函数在一点连续。 (二) 连续函数的性质 1.熟练掌握:连续函数的局部性质,闭区间上连续函数的基本性质,反函 数的连续性,复合函数的连续性。 2.深刻理解:一致连续性。 3.简单应用:能用连续性求极限。 4.综合应用:会证明函数的一致连续性,能利用闭区间上连续函数的基本 性质论证某些问题。 (三) 初等函数的连续性 1.熟练掌握:基本初等函数的连续性。 2.深刻理解:初等函数在其定义的区间内连续。 3.简单应用:会证明基本初等函数在定义域内连续,能判断初等函数间断 点的类型。 4.综合应用:会证明一般初等函数在定义域内连续,判断分段函数间断点 的类型。 第五章 导数与微分 一.考核知识点 31 1.导数的概念 2.求导法则 3.参变量函数的导数 4.高阶导数 5.微分 二.考核要求 (一) 导数的概念 1.熟练掌握:导数的定义,导函数的概念。 2.深刻理解:函数在一点的变化率,左、右导数,导数的几何意义,导函 数的介值性,函数可导与连续的关系。 3.简单应用:会求函数的平均变化率,会求曲线的切线与法线。 4.综合应用:会求分段函数的导数,能运用导数概念证明曲线的某些几何 性质。 (二)求导法则 1.熟练掌握并深刻理解:导数的四则运算,反函数的导数,复合导数的导 数,基本求导法则与公式。 2.简单应用:会用各种求导法则计算初等函数的导数。 3.综合应用:能综合运用各种求导法则计算函数的导数。 (三)参变量函数的导数 1.熟练掌握:参变量函数的导数的定义。 2.深刻理解:参变量函数的导数的几何意义。 3.简单应用:会求参变量函数所确定函数的导数。 4.综合应用:能利用参变量函数的导数证明曲线的某些几何性质。 (四)高阶导数 1.熟练掌握:高阶导数的定义。 2.深刻理解:高阶导函数的概念。 3.简单应用:会计算函数的高阶导数。 4.综合应用:能利用莱布尼茨公式计算高阶导数,计算参变量函数的高阶 导数。 32 (五)微分 1.熟练掌握:微分概念。 2.深刻理解:微分的几何意义,导数与微分的关系,一阶微分形式的不变 性。 3.简单应用:会求函数的微分。 第六章 微分中值定理及其应用 一.考核知识点 1.拉格朗日定理和函数单调性 2.柯西中值定理和不定式极限 3.泰勒公式 4.函数的极值与最值 5.函数的凸性与拐点,函数图象的讨论 二.考核要求 (一) 拉格朗日定理和函数单调性 1.熟练掌握:罗尔中值定理,拉格朗日中值定理,函数单调性。 2.深刻理解:罗尔中值定理和拉格朗日中值定理的条件与结论、证明方法, 它们的几何意义。 3.简单应用:会判断函数是否满足罗尔中值定理和拉格朗日中值定理,会 求简单函数的中值点。 4.综合应用:会用拉格朗日中值定理证明函数的单调性,利用拉格朗日中 值定理和函数的单调性,证明某些恒等式和不等式。 (二)柯西中值定理和不定式极限 1.熟练掌握:柯西中值定理, 不定式极限的计算方法。 2.深刻理解:柯西中值定理的证明方法,求不定式极限的方法。 3.简单应用:会求不定式的极限。 4.综合应用:能用柯西中值定理证明某些带中值的等式。 (三)泰勒公式 1.熟练掌握:泰勒定理,泰勒公式,麦克劳林公式。 2.深刻理解:泰勒定理的实质,泰勒公式与拉格朗日中值定理的关系。 33 3.简单应用:会利用泰勒定理展开六种函数的麦克劳林公式,余项估计。 4.综合应用:能利用泰勒公式和等价无穷小变换计算极限。 (四)函数的极值与最大〔小〕值 1.熟练掌握:函数的极值与最大〔小〕值,取极值的必要条件,驻点。 2.深刻理解:判断极值的两个充分条件。 3.简单应用:会求函数极值与最大〔小〕值。 4.综合应用:会证明某些不等式,解决求最大〔小〕值的应用问题。 (五)函数的凸性与拐点,函数图象的讨论 1.熟练掌握:函数图象的凸性与拐点,函数图象的性态。 2.深刻理解:凸函数,函数为凸函数的充要条件,曲线的渐近线。 3.简单应用:会判断函数图象的凸性与拐点,会求曲线的渐近线,能描绘 简单函数的图象。 4.综合应用:能利用函数的凸性证明不等式。 第七章 实数的完备性 一.考核知识点 1. 关于实数集完备性的基本定理 2.闭区间上连续函数性质的证明 二.考核要求 (一)关于实数集完备性的基本定理 1.熟练掌握:实数集完备性的意义,实数集完备性的几个基本定理。 2.深刻理解:确界原理、柯西收敛准则、区间套定理、聚点定理、致密性 定理、有限覆盖定理的条件和结论,及其证明方法,理解有理数集不满足完备性 定理的原因 3.应用:会求数集的聚点、确界。会用区间套定理解决简单的存在性问题。 (二)闭区间上连续函数性质的证明 1.熟练掌握:闭区间上连续函数的有界性,有最大、最小值存在性,介值 性和一致连续性。 2.深刻理解:闭区间上连续函数性质的证明思路和方法。 第八章 不定积分 34 一.考核知识点 1.不定积分概念与基本积分公式 2.换元积分法与分部积分法 3.有理函数和可化为有理函数的不定积分 二.考核要求 (一)不定积分概念与基本积分公式 1.熟练掌握:原函数、不定积分及二者的区别,基本积分表。 2.深刻理解:原函数与导数的关系,不定积分的基本性质,不定积分的几 何意义。 3.简单应用:会求简单初等函数的不定积分。 4.综合应用:能根据不定积分的几何意义求曲线方程。 (二)换元积分法与分部积分法 1.熟练掌握:换元积分法,分部积分法。 2.深刻理解:换元积分法与复合函数求导法则的关系,分部积分法与乘积 求导法的关系。 3.简单应用:会用换元积分法与分部积分法计算简单函数的不定积分。 4.综合应用:能综合运用换元积分法与分部积分法计算某些函数的不定积 分,证明某些递推公式。 (三)有理函数和可化为有理函数的不定积分 1.熟练掌握:有理函数、三角函数有理式和某些无理函数的不定积分。 2.深刻理解:以上各种不定积分的计算步骤。 3.应用:会算简单的有理函数、三角函数有理式和某些无理函数的不定积 分。 第九章 定积分 一.考核知识点 1.定积分概念和性质 2.可积条件 3.微积分学基本定理·定积分的计算 二.考核要求 35 (一)定积分概念和性质 1.熟练掌握:定积分的实际背景,黎曼积分和,定积分的性质。 2.深刻理解:构造积分和的方法,定积分及其性质的几何意义。 3.简单应用:会用定积分定义计算简单函数的定积分,利用定积分的性质 比较积分的大小,估计积分值。 4.综合应用:能用定积分定义计算某些复杂和式的极限,利用定积分的性 质证明不等式,论证函数的某些性质。 (二) 可积条件 1.一般掌握和理解:可积的必要条件和充分条件,可积函数类。 2.简单应用:会判断函数的可积性。 (三)微积分学基本定理和定积分的计算 1.熟练掌握:变上限定积分所确定的函数及其性质,微积分学基本定理。 2.深刻理解:微积分学基本定理的实质,原函数的存在性。 3.应用:用牛顿——莱布尼茨公式计算定积分,用换元积分法与分部积分 法计算定积分。 第十章 定积分的应用 一.考核知识点:平面图形的面积,由平行截面面积求体积,平面曲线的弧 长与曲率,旋转曲面的面积 二.考核要求 1.熟练掌握: 用定积分表达和计算一些几何量。 2.深刻理解:定积分的应用的实质—微元法。 3.应用:会计算平面图形的面积,由平行截面面积求体积,平面曲线的弧长, 旋转曲面的面积。 第十一章 数项级数 一.考核知识点 1.级数的收敛性 2.正项级数和一般项级数 二.考核要求 (一)级数的收敛性 36 1.熟练掌握:数项级数的定义。 2.深刻理解:级数收敛、发散的概念,收敛级数的性质,级数收敛的柯西 准则。 3.简单应用:会判断级数的收敛和发散。 4.综合应用:能应用柯西准则讨论级数的敛散性。 (二) 正项级数 1.熟练掌握:正项级数收敛的必要条件,正项级数的比较原则。 2.深刻理解:正项级数收敛比式判别法,根式判别法和积分判别法。 3.简单应用:会判别正项级数的收敛性。 4.综合应用:能运用正项级数收敛的必要条件,比较原则和几个判别法等 论证一些问题。 (三)一般项级数 1.熟练掌握:交错级数的概念,条件收敛与绝对收敛的概念及关系,莱布 尼茨判别法。 2.深刻理解:绝对收敛级数的性质,狄利克雷判别法,阿贝尔判别法。 3.简单应用:会判别一般项级数的收敛性。 4.综合应用:能进行绝对收敛级数的乘积运算。 第十二章 函数列与函数项级数 一.考核知识点 1.一致收敛性 2.一致收敛函数列与函数项级数的性质 二.考核要求 (一)一致收敛性 1.熟练掌握:函数列与函数项级数的一致收敛性的定义,一致收敛的充要 条件。 2.深刻理解:一致收敛定义的否定叙述,一致收敛的柯西准则,函数列与 函数项级数一致收敛性的判别法 3.应用:会用一致收敛性的定义或判别法判别函数列的一致收敛性,用优 级数判别法,狄利克雷判别法,阿贝尔判别法判别一些函数级数的一致收敛性。 37 (二)一致收敛函数列与函数项级数的性质 1.熟练掌握:一致收敛函数列的极限函数与函数项级数的和函数。 2.深刻理解:连续性,可积性,可微性定理。 3.简单应用:会由定理讨论函数项级数的和函数的连续性,可积性,可微 性。 4.综合应用:会由定理证明和函数的分析性质,计算函数项级数的积分与 导数。 第十三章 幂级数 一.考核知识点 1.幂级数 2. 函数的幂级数展开式 二.考核要求 (一)幂级数 1.熟练掌握: 幂级数的定义。 2.深刻理解:幂级数的性质。 3.应用:幂级数的计算,求幂级数的收敛半径。 (二)函数的幂级数展开式 1.熟练掌握:泰勒级数定义。 2.深刻理解:泰勒级数和马克劳林级数。 3.应用:能利用六个常用展开式。把一些简单的函数展成马克劳林级数。 第十四章 多元函数的极限与连续 一.考核知识点 1.平面点集与多元函数 2.二元函数的极限和连续性 二.考核要求 (一)平面点集与多元函数 1.熟练掌握:二元函数和二元函数极限的定义。弄清二重极限与累次极限 的区别极其联系。 2.深刻理解:平面点集的一些概念:邻域、内点、界点、聚点、开区域、 38 闭区域、有界区域、无界区域等。完备性定理。 3.简单应用:会求函数的定义域,画定义域的图形,并说明是何种点集。 4.综合应用:会求平面点集的聚点与界点。 (二)二元函数的极限和连续性 1.熟练掌握:二元函数的极限和连续性的概念。 2.深刻理解:累次极限和二重极限的关系。 3.简单应用:会求累次极限和二重极限。 4.综合应用:会讨论函数的连续性。 第十五章 多元函数微分学 一.考核知识点 1.可微性 2.复合函数微分法 3.方向导数与梯度及泰勒公式与极值问题 二.考核要求 (一)可微性 1.熟练掌握:偏导数与全微分定义。可微的几何意义。 2.深刻理解:可微性条件。 3.应用:会求函数的偏导数与全微分。 (二) 复合函数微分法 1.熟练掌握:复合函数微分法的有关概念。 2.深刻理解:复合函数的全微分链式法则。 3.应用:会求复合函数的偏导数或全微分。 第十五章 重积分 一.考核知识点 1.二重积分的概念及直角坐标系下二重积分的计算 2.格林公式•曲线积分与路线的无关性 3.二重积分的变量变换与三重积分 4.重积分的应用 二.考核要求 39 (一) 二重积分的概念及直角坐标系下二重积分的计算 1.熟练掌握:二重积分的概念 2.深刻理解:二重积分的性质。 3.应用:会计算二重积分。 (二) 二重积分的变量变换与三重积分 1.熟练掌握: 三重积分的概念。 2.深刻理解:二重积分的可积函数类与性质,二重积分的变量变换公式与 化三重积分为累次积分。 3.简单应用:会用极坐标计算二重积分,会三重积分换元法。 4.综合应用:能对积分进行极坐标变换并计算二重积分。计算三重积分及 累次积分。 40 《中级财务会计》考试大纲 注意:本大纲为参考性考试大纲,是考生需要掌握的基本内容。 第一章 总论 一、考核知识点 1.财务会计及其特点 2.会计的基本假设和会计确认、计量和基础 3.财务会计信息的质量要求 4.会计的确认与计量 5. 财务报告要素 二、考核要求 (一)财务会计及其特征 1.识记:财务会计、财务会计目标、会计环境、可靠性、相关性、可理解 性、可比性、实质重于形式、重要性、谨慎性、及时性。 2.理解:(1)财务会计的特征; (2)财务会计的目标; (3)财务会计信息的使用者; (4)财务会计信息质量要求基本内容及其在实务中的运用或体现; (5)社会环境对会计的影响。 (二)会计的基本假设和会计确认、计量和基础 1.识记:会计假设、会计主体、持续经营、会计分期、货币计量、权责发 生制。 2.理解:(1)会计的基本假设内容; (2)会计确认、计量的基础。 (三)会计的确认与计量 1.识记:会计确认、会计计量、计量属性、历史成本、重置成本、现值、 可变现净值、公允价值。 2.理解:(1)会计确认的标准与时间基础; 41 (2)会计计量属性及其相互之间关系。 (四)财务报告要素 1.识记:财务报告要素、财务状况要素、经营成果、资产、负债、所有者 权益、收入、费用、利润。 2.理解:(1)财务状况各要素的分类及其特征; (2)经营成果各要素的分类及其特征。 第二章 货币资金 一、考核知识点 1.现金 2.银行存款 3.其他货币资金 (一)现金 1.识记:货币资金、库存现金、备用金。 2.理解:(1)理解现金的含义、流通手段及其特征 (2)现金的使用范围特征及其库存现金限额; (3)现金的内部控制; (3)备用金的管理制度及其核算。 3.应用:库存现金的序时及总分类核算、备用金会计处理。 (二)银行存款 1.识记:银行存款、转账结算、银行汇票、银行本票、支票、商业汇票、 汇兑、委托收款、托收承付、信用证、托收、汇付、未达账项。 2.理解:(1)银行开户及其各账户管理规定; (2)银行结算纪律的基本内容 (3)转账结算方式及其特征。 3.应用: 银行存款的序时及总分类核算、银行存款余额调节表编制方法。 (三)其他货币资金的会计处理 1.识记:其他货币资金、外埠存款、存出投资款、信用卡存款。 2.理解:其他货币资金的基本内容。 42 3.应用:其他货币资金的会计处理。 第三章 存货 一、考核知识点 1.存货及其分类 2.存货的初始计量 3.发出存货的计量 4.计划成本法 5.存货的期末计量与清查 二、考核要求 (一)存货及其分类 1.识记:存货、原材料、在产品、自制半成品、委托加工材料、周转材料、 在途存货、在库存货、在制存货、在售存货。 2.理解:(1)存货的特点; (2)存货确认的条件; (3)存货的分类。 (二)存货的初始计量 1.识记:存货的初始计量、外购存货的成本、非货币性资产交换。 2.理解:(1)存货初始计量; (2)外购存货发生短缺的会计处理。 3. 应用:外购的存货会计处理、非货币性资产交换取得存货、委托加工存 货、债务重组去的存货的会计处理。 (三)发出存货的计量 1.识记:先进先出法、月末一次加权平均法、移动加权平均法、个别计价 法、一次摊销法、五五摊销法。 2.理解:(1)存货成本的流价方法的种类、适用性及其特点。 3.应用:发出存货的会计处理。 (四)计划成本法 1.识记:计划成本法。 43 2.理解:(1)计划成本法的基本核算程序; (2)计划成本法的优点及显著特点。 3. 应用:存货按计划成本法初始计量、形成差异、领用、摊销的会计处理。 (五)存货的期末计量与清查 1.识记:成本与可变现净值孰低法、存货的成本、可变现净值。 2.理解:(1)确定存货可变现净值应当考虑的主要因素; (2)存货减值的判断依据; (3)计提存货跌价准备的基础; (4)存货可变现净值为零的判断依据。 (5)存货清查的意义与方法 应用:(1)存货减值准备的计提、转回的会计处理; (2)存货盘亏和盘盈的会计处理。 第四章 金融资产 一、考核知识点 1. 金融资产及其分类 2. 交易性金融资产 3. 持有至到期投资 4. 贷款和应收款项 5. 可供出售金融资产 6. 金融资产减值 二、考核要求 (一)金融资产及其分类 1. 识记:金融资产、交易性金融资产、持有至到期投资、贷款和应收款项、 可供出售金融资产。 2.理解:(1)金融资产的内容; (2)金融资产的分类。 (二)交易性金融资产 1.理解:交易性金融资产的初始计量。 44 2.应用:交易性金融资产初始、持有收益、期末计量以及处置的会计处理。 (三)持有至到期投资 1.识记:摊余成本、实际利率。 2. 理解:持有至到期投资的特征。 2.应用:持有至到期投资初始计量、利息收入的确认与摊销方法、到期收 回、处置与重分类的会计处理。 (四)贷款和应收款项 1. 识记:应收账款、商业折扣、现金折扣、总价法、净价法、应收票据、 应收票据贴现、预付账款。 2. 理解:(1)总价法与净价法的区别; (2)应收票据的确认与计价; (3)应收债权出售和融资的会计处理原则。 3.应用:总价法与净价法的会计处理;应收票据的取得、贴现、到期的会 计处理。 (五)可供出售金融资产 1.理解:可供出售金融资产初始计量。 2.应用:可供出售金融资产初始计量、持有收益的确认、期末计量及处置 账会计处理。 (六)金融资产减值 1. 识记:坏账准备、应收款项余额百分比法;账龄分析法。 2.理解:(1)金融资产减值损失的确认条件; (2)贷款和应收款项减值损失的计量方法。 应用:(1)持有至到期投资 (2)可供出售金融资产减值损失计量; (3)贷款和应收款项减值损失的会计处理。 第五章 长期股权投资 一、考核知识点 1. 长期股权投资及其初始计量 45 2. 长期股权投资后续计量与处置 3. 长期股权投资的转换与重分类 二、考核要求 (一) 长期股权投资及其初始计量 1. 识记:长期股权投资控制、控制、重大影响、共同控制、企业合并、同 一控制下的企业合并、非同一控制下的企业合并 2.理解:(1)控制具备的基本要素; (2)重大影响具备的条件 (3)长期股权投资初始计量原则 应用:(1)企业合并形成长期股权投资; (2)非企业合并方式取得的长期股权投资会计处理。 ①以支付现金取得的长期股权投资 ②以发行权益性证券取得的长期股权投资 ③投资者投入的取得的长期股权投资 ④以非货币性资产交换取得的长期股权投资 ⑤通过债务重组取得的长期股权投资 (二)长期股权投资后续计量与处置 1.识记:长期股权投资成本法、长期股权投资权益法。 2.理解:(1)长期股权投资成本法的核算要点及适用范围 (2)产期股权投资权益法的核算要点及适用范围。 3. 应用:长期股权投资的成本法和权益法取得、后续及处置的会计处理。 (三)长期股权投资的转换与重分类 应用:(1)长期股权投资会计处理方法的转换; (2)长期股权投资的重分类会计处理 第六章 固定资产 一、考核知识点 1.固定资产的含义及其特征 2.固定资产的确认与初始计量 46 3.固定资产后续计量 4.固定资产的处置 二、考核要求 (一)固定资产的含义及其特征 1.识记:固定资产。 2.理解:(1)固定资产特征; (2)固定资产的分类。 (二)固定资产的确认与初始计量 1.识记:固定资产确认、固定资产初始计量、原始价值、重置完全价值。 2. 理解:(1)固定资产的确认条件; (2)自营工程成本需要注意的问题; (3)经营性租入固定资产和融资性租入固定资产特点。 应用:(1)外购固定资产初始计量 (2)自行建造固定资产初始计量 (3)投资转入固定资产初始计量 (4)租入固定资产初始计量 (5)非货币性资产交换取得固定资产初始计量 (6)债务重组取得固定资产初始计量 (7)接受捐赠取得固定资产的初始计量 (8)盘盈固定资产初始计量 (三)固定资产的后续计量 1. 识记:固定资产折旧、无形损耗、有形损耗、固定资产折旧方法、年限 平均法、工作量法、双倍余额递减法、年数总和法;预计净残值 2. 理解:(1)影响固定资产折旧的因素及折旧范围; (2)各种固定资产折旧方法有缺点 (3)加速折旧法及其特点。 3.应用:固定资产折旧的计算方法与会计处理;固定资产后续支出会计处 理。 (四)固定资产后续支出及处置的会计处理 47 1.理解:(1)固定资产后续支出及其分类 (2)固定资产处置及终止条件。 3. 应用:固定资产出售、持有待售、报废、毁损、盘亏等会计处理。 第七章 无形资产 一、考核知识点 1. 无形资产的含义及特征 2. 无形资产的初始计量 3. 内部研究开发费用的确认与计量 4. 无形资产的后续计量与处置 二、考核要求 (一)无形资产的含义及特征 1.识记:无形资产。 2.理解:(1)无形资产的特征及分类; (2)无形资产的确认。 (二)无形资产的初始计量 1. 识记:无形资产的初始计量 2. 应用:(1)外购的无形资产的初始计量; (2)非货币性资产交换取得无形资产的初始计量 (3)债务重组取得无形资产的初始计量。 (三)内部研究开发费用的确认与计量 1. 识记:研究阶段、开发阶段。 2. 理解:(1)内部研究开发费用的处理方法 (2)内部研发费用的确认与计量原则。 3.应用:内部研究开发费用的会计处理。 (四)无形资产的后续计量与处置 1. 识记:无形资产的处置。 2. 理解:(1)无形资产使用寿命确定与复核; (2)无形资产摊销方法。 48 应用:(1)无形资产摊销; (2)无形资产处置的会计处理。 第八章 投资性房地产 一、考核知识点 1. 投资性房地产及其初始计量 2. 投资性房地产的后续支计量 3. 投资性房地产与非投资性房地产转换及处置 二、考核要求 (一)投资性房地产及其初始计量 1.识记:房地产、投资性房地产。 2.理解:(1)投资性房地产的性质; (2)投资性房地产的范围; (3)投资性房地产的确认条件; (4)投资性房地产后续计量模式。 应用:(1)外购的投资性房地产; (2)自行建造取得投资性房地产。 (二)投资性房地产的后续计量与后续支出 1. 理解:(1)公允价值模式后续计量确认的条件; (2)投资性房地产后续支出的处理原则。 2. 应用:(1)采用成本模式计量投资性房地产 (2)采用公允价值模式计量投资性房地产 (3)投资性房地产后续计量模式的变更; (4)投资性房地产资本化与费用化的后续支出。 (三)投资性房地产与非投资性房地产转换及处置 1. 理解:房地产的转换形式。 2. 应用:(1)非投资性房地产转换为投资性房地产; (2)投资性房地产转换为非投资性房地产 (3)投资性房地产处置的会计处理。 49 第九章 资产减值 一、考核知识点 1. 资产减值及其确认 2. 资产可收回金额的计量 3. 资产组减值损失的确认与计量 二、考核要求 (一)资产减值及其确认 1.识记:资产减值。 2 理解:资产减值损失确认标准。 (二)资产可收回金额的计量 1. 识记:资产的可收回金额。 2.理解:(1)估计资产可收回金额的基本方法; (2)资产预计未来现金流量的预计。 3. 应用:资产减值的损失的会计处理。 (三)资产组减值损失的确认与计量 1. 识记:资产组。 2. 理解:(1)资产组的认定;(2)资产组减值的测试。 3. 应用:资产组减值的会计处理。 第十章 负债 一、考核知识点 1. 负债及其确认条件 2. 流动负债及会计处理 3. 非流动负债及会计处理 4. 借款费用确认条件及原则 5. 债券溢价、折价的摊销 6.债务重组方式及其会计处理 二、考核要求 50 (一)负债及其确认条件 1. 识记:负债、流动负债、非流动负债。 2.理解:(1)负债的特征与确认条件; (2)负债的分类。 (二)流动负债 1.识记:短期借款、交易性金融负债、应付票据、应付账款、预收账款、 其他应付款、应交税费、职工薪酬、短期薪酬、应付股利、应付利息。 2.理解:(1)流动负债计价与形成原因; (2)总价法与净价法比较; (3)职工薪酬的基本内容; (4)应交税费会计处理的内容; (5)其他应付款会计处理内容。 3.应用:短期借款、应付票据、应付账款、预收账款、应付职工薪酬、应 交税费(增值税、消费税和营业税)的会计处理。 (三)非流动负债 1.识记:长期借款、应付债券、实际利率法、或有负债、预计负债、弃置 费用、借款费用、债务重组、长期应付款、专项应付款、或有事项。 2.理解:(1)长期借款的特点; (2)或有事项的特征; (3)预计负债确认的条件、计量及其披露; (4)或有负债及其披露; (5)借款费用确认、借款费用开始资本化条件、暂停期间以及终 止时点; (6)债务重组的特征、方式与确认原则。 应用:(1)长期借款取得、利息及偿还的会计处理; (2)应付债券发行、利息调整、、收到期或提前赎回会计处理; (3) 借款费用资本化金额的确定、计量与会计处理; (4)债务重组的会计处理 51 第十一章 所有者权益 一、考核知识点 1.所有者权益 2.留存收益 二、考核要求 (一)所有者权益 1. 识记:所有者权益、利得、损失、投入资本、资本公积、实收资本。 2. 理解:(1)所有者权益的来源构成; (2)注册资本的法律规定; (3)资本公积的来源与用途。 3. 应用:投入资本、资本公积的会计处理。 (二)留存收益 1.识记:留存收益、法定盈余公积、任意盈余公积、未分配股利、股利。 2.理解:(1)留存收益的性质及构成; (2)盈余公积的用途; (3)股利分派限制 (4)股利的种类。 3.应用:留存收益的会计处理。 第十二章 收入、费用和利润 一、考核知识点 1.收入 2.费用 3.所得税费用 4. 利润及利润分配 二、考核要求 (一)收入 1.识记:收入、主营业务收入、其他业务收入、销售折扣、销售折让、销售 退回、销售退回、分期收款销售、委托代销、售后回购、售后租回、完工百分比 52 法、建造合同。 2.理解:(1)收入的特征与分类; (2)销售商品收入的确认条件; (3)劳务收入确认与计量的基本原则; (4)让渡资产使用权收入的内容与确认条件; (5)建造合同的特征及分类。 3.应用:(1)销售商品的一般会计处理; (2)销售折扣、折让与退回 (3)殊销售商品业务的会计处理。 ①分期收款销售 ②委托代销 ③附有销售退回条件的商品销售 ④分期预收款销售 ⑤售后回购 (4)提供劳务收入的会计处理 (二)费用 1.识记:费用、期间费用、管理费用、销售费用、财务费用、生产成本。 2.理解:(1)费用的特征与分类; (2)费用与资产、成本和损失的关系; (3)费用的确认与计量; (4)期间费用的基本具体内容。 (三)所得税费用 1.识记:所得税会计、永久性差异、暂时性差异、利润表债务法、资产负 债表债务法、资产的计税基础、负债的计税基础、应纳税暂时性差异、可抵扣暂 时性差异、递延所得税资产、递延所得税负债、所得税费用。 2.理解:(1)会计利润与应纳税所得额之间的差异; (2)资产负债表债务法的基本核算程序; (3)当期所得税与递延所得税的内涵与确定。 应用:(1)递延所得税负债的确认与计量; 53 (2)递延所得税资产的确认与计量; (3)所得税费用的确认与计量。 (四)利润 1.识记:利润、营业利润、利润总额、净利润、营业外收入、营业外支出 2.理解:(1)利润的构成; (2)利润的结转与分配 3.应用:利润的结转与分配的会计处理。 第十三章 财务报告 一、考核知识点 1.财务报告 2.资产负债表 3.利润表 4.现金流量表 5. 所有者权益变动表 6. 财务报表附注 7. 中期财务报告 二、考核要求 (一)财务报告 1.识记:财务报告、财务报表。 2.理解:(1)财务报告披露的信息、财务报告的作用; (2)财务报告披露方式与分类; (3)财务报告的编制原则; (4)列报的基本要求。 (二)资产负债表 1. 识记:资产负债表、财务弹性。 2. 理解:(1)资产负债表的作用; (2)资产负债表的局限性; (3)资产负债表的列报格式与列报方法。 54 3. 应用:资产负债表编制。 (三)利润表 1.识记:利润表、资本保全、资产负债观、收入费用观。 2.理解:(1)利润表的作用; (2)不同收益计量观; (3)利润表的局限性; (4)利润表的列报格式与列报方法。 3.应用:利润表的编制。 (四)现金流量表 1.识记:现金流量表、现金等价物、现金流量、工作底稿法、T 形账户法。 2.理解:(1)现金流量表的作用; (2)现金流量表的结构内容与编制基础; (3)现金流量表的编制方法:直接法和间接法; (4)现金流量表的编制。 (五)所有者权益变动表 1.识记:所有者权益变动表。 2.理解:所有者权益变动表的作用。 (六)财务报表附注 1. 识记:财务报表附注 2. 理解:(1)提供财务报表附注的原因及作用; (2)财务报表附注披露的基本要求及其形式; (3)财务报表附注的基本内容。 (七)中期财务报告 1. 识记:中期财务报告、独立观、一体观。 2. 理解:(1)中期财务报告的构成及其作用; (2)中期财务报告的理论基础; (3)中期财务报告编制的原则、确认与计量的基本原则。 第十四章 会计调整 55 一、考核知识点 1.会计政策及其变更 2.会计估计变更 3. 前期差错及其更正 4. 资产负债表日后事项 二、考核要求 (一)会计政策与及其变更 1.识记:会计调整、会计政策、会计政策变更、追溯调整法;未来适用法。 2.理解:(1)会计政策特点; (2)重要的会计政策判断及其内容; (3)会计政策变更的会计处理原则; (二)会计估计及其变更 1.识记:会计估计、会计估计变更。 2.理解:(1)会计估计的特点; (2)会计估计的判断; (3)会计估计变更的披露; (4)会计政策变更和会计估计变更的划分。 (三)前期差错及其更正 1.识记:前期差错。 2.理解:(1)前期差错的类型; (2)前期差错重要性的判断; (3)前期差错更正的披露。 3. 应用:前期差错更正的会计处理。 (四)资产负债表日后事项 1.识记:资产负债表日后事项、资产负债表日后调整事项、资产负债表日 后非调整事项。 2.理解:(1)资产负债表日后事项涵盖期间; (2)资产负债表日后事项的内容。 3. 应用:资产负债表日后事项会计处理。
上一篇文章: 2017年辽宁师范大学数字与逻辑电路考研大纲 下一篇文章: 2017年辽宁师范大学生科植物学考研大纲 |