2017年湖南师范大学723数学分析考研大纲自命题考试大纲
文章搜索   高级搜索   
考研试卷库

考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文  2017年湖南师范大学723数学分析考研大纲自命题考试大纲

新闻资讯
普通文章 上海理工大学各学院博士生导师联系方式
普通文章 上海师范大学2018年录取研究生学费标准
普通文章 北京航空航天大学2002-2016年硕士博士研
普通文章 南开大学张文忠教授简介
普通文章 南开大学阎国栋教授简介
普通文章 南开大学王新新教授简介
普通文章 南开大学王丽丹教授简介
普通文章 南开大学王宏印教授简介
普通文章 南开大学王传英教授简介
普通文章 南开大学苏立昌教授简介
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信

2017年湖南师范大学723数学分析考研大纲自命题考试大纲

湖南师范大学硕士研究生入学考试自命题考试大纲
考试科目代码:723 考试科目名称:数学分析
一、试卷结构
1) 试卷成绩及考试时间
本试卷满分为 150 分,考试时间为 180 分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
数学分析
4)题型结构
a: 填空题,10 小题,每小题 7 分,共 70 分
b: 讨论题,3 小题,每小题 10 分,共 30 分
c: 解答题(包括证明题),5 小题,每小题 10 分,共 50 分
二、考试内容与考试要求
1、极限论
考试内容
① 各种极限的计算; ② 单调有界收敛原理、致密性定理、确界原理、
Cauchy 收敛原理等实数基本理论的灵活应用; ③ 连续函数特别是闭区间上连
续函数性质的运用; ④ 极限定义的熟练掌握等.
考试要求
(1)能熟练计算各种极限,包括单变量和多变量情形.
(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、
确界原理、Cauchy 收敛原理进行各种理论证明.
(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能
利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连
续函数的性质,能利用这些性质进行计算和证明.
(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.
2、单变量微分学
考试内容
① 微分中值定理(包括 Roll 定理、Lagrange 中值定理、Cauchy 中值定理等)
的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证
明等); ② Talor 公式的灵活运用(包括用 Lagrange 余项形式证不等式、用
Peano 余项形式估计阶以及求极限等);③ 各种形式导数的计算; ④ 导数的
定义和运用等.
考试要求
(1)熟练掌握微分中值定理,包括 Roll 定理、Lagrange 中值定理、Cauchy
中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单
调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.
(2) 熟练掌握 Talor 公式的条件和结论,并能做到灵活运用,尤其是利用
Lagrange 余项形式证不等式、Peano 余项形式估计阶以及求极限等.
(3)熟练掌握复合函数导数的计算和高阶导数的计算.
(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握
利用导数定义进行证明或计算.
3、单变量积分学
考试内容
① 各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧; ② 广义
积分的计算和敛散性判别; ③ 定积分的定义和性质的灵活运用等.
考试要求
(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部
积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.
(2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混
合型广义积分的敛散性判别,并能进行理论证明.
(3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练
掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.
4、级数论
考试内容
① 各种数项级数尤其是正项级数的敛散性判别;② 数项级数的性质
③ 函数列和函数项级数的一致收敛性判别,给定函数 Fourier 级数的展开和特殊
点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用 ;⑤幂级数的收
敛性和展开等知识的熟练掌握.
考试要求
(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.
(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束
的常规性质.
(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优
级数判别法、Abel 判别法、Dirichlet 判别法判别函数项级数的一致收敛性,熟练
掌握给定函数的 Fourier 展开,能给出 Fourier 级数在特殊点的收敛性.
(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、
可积性和可微性,能利用这些性质进行理论证明.
(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,
并掌握一些特殊幂级数和函数的求法.
5、多变量微分学和参变量积分
考试内容
① 可微的定义; ② 求复合函数以及隐函数的偏导数; ③ 多元函数极值
理论; ④ 参变量积分的一致收敛性判别; ⑤ 参变量积分的计算; ⑥ 参变
量积分一致收敛性质的运用等.
考试要求
(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微
性,掌握多元函数可微、连续、可求偏导之间的关系.
(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或
方程组确定的隐函数偏导的计算.
(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..
(4)熟练掌握含参变量广义积分一致收敛性的判别.
(5)熟练掌握含参变量常义积分和广义积分的计算.
(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,
并能利用这些性质进行计算和证明..
6、多元积分学
考试内容
①二重积分、三重积分的计算; ② 格林公式、高斯公式的灵活运用;
③两类曲线积分、两类曲面积分的计算;④ 各种积分之间的相互关系等
考试要求
(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其
是极坐标、球坐标变换.
(2)熟练掌握 Gree 公式、Gauss 公式的条件和结论.
(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.
(4)掌握平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,
熟练掌握利用 Gree 公式求第二类曲线积分、利用 Gauss 公式求第二类曲面积分、
利用 Stokes 公式求空间第二类曲线积分..
三、参考书目
[1] 复旦大学数学系编. 数学分析. 高等教育出版社, 1979
[2] 华东师范大学数学系编. 数学分析 高等教育出版社, 2001
[3] 张学军、王仙桃等编. 数学分析选讲. 湖南师范大学出版社,2012

  • 上一篇文章:

  • 下一篇文章:
  •  

    考博咨询QQ 135255883 点击这里给我发消息 考研咨询QQ 33455802 点击这里给我发消息 邮箱:customer_service@kaoboinfo.com
    考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!