2016年长江大学601高等数学考研大纲
文章搜索   高级搜索   
考研试卷库

考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文  2016年长江大学601高等数学考研大纲

新闻资讯
普通文章 上海理工大学各学院博士生导师联系方式
普通文章 上海师范大学2018年录取研究生学费标准
普通文章 北京航空航天大学2002-2016年硕士博士研
普通文章 南开大学张文忠教授简介
普通文章 南开大学阎国栋教授简介
普通文章 南开大学王新新教授简介
普通文章 南开大学王丽丹教授简介
普通文章 南开大学王宏印教授简介
普通文章 南开大学王传英教授简介
普通文章 南开大学苏立昌教授简介
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信

2016年长江大学601高等数学考研大纲

2016 年全国硕士研究生统一入学考试
高等数学 科目考试大纲
一、考试形式和试卷结构
1、试卷满分及考试时间
本试卷满分 150 分,考试时间为 180 分钟。
2、答题方式
答题方式为闭卷、笔试
3、试卷题型结构
单选题 8 小题,每小题 4 分,共 32 分
填空题 6 小题,每小题 4 分,共 24 分
解答题(包括证明题) 9 小题,共 94 分
二、考查范围
(一)函数、极限、连续
考试内容
函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、
反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关
系的建立。
数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和
无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算
极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限。
函数连续的概念,初等函数的连续性,闭区间上连续函数的性质。
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左
极限、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限
求极限的方法。
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无
穷小量求极限。
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质
(有界性、最大值和最小值定理、介值定理)。
(二)一元函数微分学
考试内容
导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之
间的关系,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数、
隐函数以及参数方程所确定的函数的微分法,高阶导数,微分中值定理,洛必达
(L'Hospital)法则,函数单调性的判别,函数的极值,函数的最大值与最小值。
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,
了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之
间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导
数公式,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)
定理,了解并会用柯西(Cauchy)中值定理.
5.掌握用洛必达法则求未定式极限的方法.
6.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方
法,掌握函数最大值和最小值的求法及其应用.
(三)一元函数积分学
考试内容
原函数和不定积分的概念,不定积分的基本性质,基本积分公式,定积分的
概念和基本性质,定积分中值定理,积分上限的函数及其导数,牛顿-莱布尼茨
(Newton-Leibniz)公式,不定积分和定积分的换元积分法与分部积分法,有理函
数、三角函数的有理式和简单无理函数的积分。
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定
理,掌握换元积分法与分部积分法。
3.会求有理函数、三角函数有理式和简单无理函数的积分。
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
(四)多元函数微分学
考试内容
多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念,有
界闭区域上多元连续函数的性质,多元函数的偏导数和全微分,全微分存在的必
要条件和充分条件。
多元复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度,二元函数
的二阶泰勒公式,多元函数的极值和条件极值,多元函数的最大值、最小值及其
简单应用。
考试要求
1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必
要条件和充分条件,了解全微分形式的不变性。
4.理解方向导数与梯度的概念,并掌握其计算方法。
5.掌握多元复合函数一阶、二阶偏导数的求法。
6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解二元函数的二阶泰勒公式。
8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条
件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘
数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应
用问题。
(五)多元函数积分学
考试内容
二重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,
两类曲线积分的关系,格林(Green)公式,平面曲线积分与路径无关的条件,二
元函数全微分的原函数,两类曲面积分的概念、性质及计算。
考试要求
1.理解二重积分、了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标)。
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关
系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全
微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲
面积分的方法。
(六)无穷级数
考试内容
常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与
收敛的必要条件,几何级数与级数及其收敛性,正项级数收敛性的判别法,交错
级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛,函数项级数的收敛域与
和函数的概念,幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的
和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法,初等
函数的幂级数展开式。
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性
质及收敛的必要条件。
2.掌握几何级数与级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛
域的求法。
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项
积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的
和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂
级数。

  • 上一篇文章:

  • 下一篇文章:
  •  

    考博咨询QQ 135255883 点击这里给我发消息 考研咨询QQ 33455802 点击这里给我发消息 邮箱:customer_service@kaoboinfo.com
    考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!