2018年天津理工大学803数学分析考研大纲
文章搜索   高级搜索   
考研试卷库

考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文  2018年天津理工大学803数学分析考研大纲

新闻资讯
普通文章 上海理工大学各学院博士生导师联系方式
普通文章 上海师范大学2018年录取研究生学费标准
普通文章 北京航空航天大学2002-2016年硕士博士研
普通文章 南开大学张文忠教授简介
普通文章 南开大学阎国栋教授简介
普通文章 南开大学王新新教授简介
普通文章 南开大学王丽丹教授简介
普通文章 南开大学王宏印教授简介
普通文章 南开大学王传英教授简介
普通文章 南开大学苏立昌教授简介
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信

2018年天津理工大学803数学分析考研大纲

1
天津理工大学 2018 年硕士研究生入学考试大纲
一、 考试科目:数学分析(803)
二、 考试方式:考试采用笔试方式。考试时间为 180 分钟,试卷满分为 150 分。
三、 试卷结构与分数比重:
试卷共分为四部分
一、 填空题
二、 选择题
三、 计算题
四、 证明题
四、考查的知识范围:
第二章
1、数列的极限。2、函数的根限。
3、函数的连续性。4、无穷小与无穷大。
基本要求:
(1)掌握极限的定义,会用ε ——N,ε —δ 语言证明极限存在。
(2)会求极限,掌握关于极限的性质。
(3)掌握函数连续的概念,会判断函数的连续性,会判断间断点及类型,熟悉连续函数
的运算性质和局部性质。
(4)会比较无穷小的阶,并会使用等价无穷小求极限。
(5)熟悉闭区间上连续函数的性质。
第三章 实数连续性定理
1、实数连续性的基本定理。
2、闭区间上连续函数性质的证明。
基本要求:
(1)熟悉六个实数连续性定理的条件与结论,这六个定理是:单调有界数列必有极限,
确界原理,闭区间套定理,有界无穷数列必有收敛子列,有限覆盖定理,cauchy 收敛准则。
(2)了解六个定理之间的逻辑关系。
(3)掌握函数一致连续的概念。
(4)掌握闭区间上连续函数的性质,并会使用这些性质证明一些较简单的命题。
(5)熟悉闭区间上连续函数性质的证明过程。
第四章 导数与微分
1、函数导数的定义与求导公式。
2、求导法则:
(1)四则运算法则,(2)复合函数求导法则。
2
(3)隐函数及参数分程表示的函数的求导法则。
3、高阶导数
4、微分及其运算
基本要求
(1)掌握导数,左、右导数的定义,会用左、右导数求导数或证明导数的存在。
(2)熟练掌握求导法则,会求导数,包含高阶导数。
(3)理解导数与微分之间的关系,会求微分。
第五章 微分中值定理及其应用
1、中值定理。2、泰勒公式。
3、函数的单调性,凸性,极值。
4、L’Hospital 法则。
基本要求:
(1)掌握三个中值定理特别是拉格朗日中值定理的应用。
(2)熟悉泰勒公式及其余项的两种形式:拉格朗日余项和皮亚诺余项。
(3)会利用导数判断函数的单调性,凸性,求拐点。
(4)会求函数的极值,最值。
(5)会使用 L’Hospital 法则求极限。
第六章 不定积分
1、不定积分的概念与运算法则。
2、不定积分的计算。
基本要求:
(1)熟练运用积分公式。
(2)掌握换元积分法,分部积分法。
(3)掌握有理函数积分法,简单有理函数和三角有理式的积分法。
第七章 定积分
1、定积分的概念。2、定积分的可积性质。
3、定积分的性质。4、定积分的计算。
基本要求:
(1)掌握定积分的定义。
(2)会运用定积分的性质,特别是变限函数性质的应用。
(3)会计算定积分(N——L 公式,换元积分与分部积分等)。
第八章 定积分的应用
1、平面图形面积的计算。
2、曲线的孤长。
3、体积的计算:旋转体, 截面面积已知。
4、旋转曲面的侧面积。
5、平均值。
下册
3
第九章 数项级数
1、数项级数的收敛性和基本性质。2、正项级数。
3、任意项级数。4、绝对收敛级数和条件收敛级数的性质。
基本要求:
(1)掌握收敛级数的基本性质和 Cauchy 收敛准则。
(2)掌握一般项级数收敛的以下的判断法:收敛的充要条件,比较判断法,比值判别法,
根式判别法,积分判别法,掌握交错级数收敛的判别法,任意级数转化为正项级数的判别法,
掌握狄利克莱,阿贝尔判别法。
(4)了解绝对收敛级数,条件收敛级数的性质。
第十章 广义积分
1、无穷限的广义积分。
2、无界函数的广义积分。
基本要求:
(1)广义积分的计算。
(2)掌握广义积分收敛的判别法。
第十一章 函数项级数
1、函数项级数的收敛和一致收敛。
2、幂级数的收敛区间,和函数。
3、将函数展成幂级数。
基本要求:(1)掌握函数项级数的一致收敛性的概念,会判断一致收敛,主要是 M——
判别法。
(2)掌握一致收敛的函数项级数的三个分析性质:逐项微分、逐项积分、函数的连续性。
(3)会求幂级数的收敛半径,收敛区域。
(4)会求和函数以及将函数展成幂级数。
第十二章 Fourier 级数
1、函数展成 Fourier 级数。2、Fourier 级数的收敛性。
基本要求:
(1)会求周期为 2T 的函数的 Fourier 级数。
(2)会将定义于[O、T]的函数展成正弦级数或余弦级数。
(3)掌握函数 f(x)的 Fourier 级数的收敛性定理。
第十三章 多元函数的极限与连续
1、平面点集。2、多元函数的极限。
3、多元函数的连续。
基本要求:
(1)熟悉距离,邻域,聚点、内点、开集、闭集、区域的概念。
(2)了解平面点集连续性定理。
(3)掌握多元函数极限的概念(主要是二元函数的极限),熟悉重极限与累次极限的关
系。
4
(4)熟悉多元函数连续的概念,掌握极限的运算法则,连续函数的局部性质。
(5)熟悉有界闭区域连续函数的性质。
第十四章 偏导数和含微分
1、偏导数和全微分的概念。
2、复合函数求偏导数的法则。
3、隐函数的求导法则。
4、空间曲线的切线与法平面方程。
5、空间曲面的切平面与法线方程。
6、方向导数与梯度。
基本要求:
(1)会求偏导数。
(2)掌握隐函数(一个方程,两个方程)的求导法则。
(3)会求空间曲线的切线法平面方程。空间曲面的切面与法线方程。
(4)会求方向导数和梯度。
第十五章 极值
1、极值与最值的求法。
2、条件极值的求法(拉格朗日乘子法)。
第十六章 隐函数存在定理
1、隐函数存在定理。2、函数行列式的性质。
基本要求:
(1)掌握隐函数(一个方程,多个方程)存在定理的条件与结论。
(2)熟悉函数行列式的性质。
第十七、十八章 含参变量的积分
1、含参变量的定积分。
2、含参变量的无穷限积分。
3、含参变量的无界函数的积分。
基本要求:
(1)掌握含参量定积分的分析性质。
(2)掌握含参变量广义积分的一致收敛性的概念,一致收敛性的判别法,主要是控制
收敛定理即魏尔斯特拉斯判别法。
(3)掌握一致收敛积分的分析性质,连续性、积分号下求导,积分号下积分。
第十九章 重积分,第一类曲线积分,第一类曲面积分的定义与性质
基本要求:
(1)掌握二重,三重积分,第一类曲线积分和曲面积分的定义。
(2)理解重积分的几何意义,第一类曲线积分和曲面积分的物理意义。
(3)掌握以上三种积分的性质。
第二十章 重积分的计算及应用
1、二重、三重积分化为累次积分法。
5
2、二重积分、三重积分的换元积分法。
基本要求:
(1)掌握二重积分转化为累次积分的方法。
(2)掌握二重积分的极坐标变换,三重积分球面坐标变换的积分法。
(3)了解二重积分、三重积分的一般变换的积分方法。
第二十一章 曲线积分与曲面积分的计算
1、第一类曲线积分,曲面积分的计算。
2、第二类曲线积分的定义与计算。
3、第二类曲面积分的定义与计算。
4、两类曲线积分,两类曲面积分之间的关系。
第二十二章 各种积分之间的关系
1、格林公式。2、奥高公式。3、曲线积分与路径的关系。
基本要示:
(1)掌握以上主要公式的应用。
(2)掌握曲线积分与路径的关系的条件。
考试内容基本要求:
1、 计算方面
(1)会求极限(2)会求导数,含偏导和高阶导数,方向导数,梯度。(3)会求积分(含
不定积分,定积分、广义积分、重积分、曲线积分、曲面积分)(4)会求无穷级数的和与收
敛区间,会将函数展成幂级数或 Fourier 级数。
2、证明方面
(1)用ε ——N,ε —δ 语言证明极限或函数的连续性。
(2)会运用连续函数性质(含闭区间上连续函数和极限性质如局部有界性,保号性或保
序性等)以及函数极限与数列极限的关系,证明有关命题。
(3)会用微分中值定理和定积分性质证明有关命题。
(4)函数项级数,含参变量积分(广义)的一致收敛性的证明,以及运用函数项级数,
含参变量积分一致收敛的分析性质证明有关命题,熟练掌握幂级数“内闭一致收敛”性质。
(6)熟练掌握一致连续函数的应用。
(7)会应用极限存在的法则(单调有界原理,Cauchy 收敛准则,夹逼法则,致密性定
理等)
3、判断方面
(1)会判断数值级数和幂级数的收敛性。
(2)会判断广义积分的收敛性。
4、应用方面
(1)导数应用:函数的单调性,凸性、极值、不等式。
(2)积分(含重积分)的应用:面积,体积、弧长、曲面面积。

  • 上一篇文章:

  • 下一篇文章:
  •  

    考博咨询QQ 135255883 点击这里给我发消息 考研咨询QQ 33455802 点击这里给我发消息 邮箱:customer_service@kaoboinfo.com
    考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
    声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!