重庆医科大学 2021 年硕士研究生招生考试考试大纲
432 统计学
Ⅰ.考试性质
统计学考试是为高等院校和科研院所招收应用统计学专业硕士研究生而设
置具有选拔性质的考试科目,其目的是科学、公平、有效地测试考生是否具备攻
读应用统计专业硕士学位所需要基础知识和技能,评价的标准是高等学校相关专
业优秀本科毕业生能达到的及格或及格以上水平,以利于各高等院校和科研院所
择优选拔,确保硕士研究生的招生质量。
Ⅱ.考查目标
要求考生系统掌握统计学中的基本理论、基本知识和基本技能,能够运用所
学的基本理论、基本知识和基本技能综合分析、判断和解决有关理论问题和实际
问题。
Ⅲ.考试形式和试卷结构
一、试卷满分及考试时间
本试卷满分为 150 分,考试时间为 180 分钟。
二、答题方式
答题方式为闭卷、笔试。
三、试卷内容结构
研究设计 约 15%
单变量统计描述 约 20%
其中 统计图表 约 5%
数据的概括性度量 约 15%
单变量统计推断 约 40%
其中 定量资料统计推断 约 25%
定性资料与等级资料统计推断 约 15%
双变量的线性回归与相关分析 约 10%
多元统计分析方法 约 15%
四、试卷题型结构
1
名词解释 1~5 小题,每小题 5 分,共 25 分
单项选择 第 6~20 小题,每小题 2 分,共 30 分
填空 第 21~30 小题,10 个空,每空 1 分,共 10 分
综合应用 第 31~40 小题 每小题 6~10 分,共 85 分
Ⅳ.考查内容
一、统计学基本概念
1.同质与变异
2.总体与样本。
3.参数与统计量。
4.系统误差与随机误差。
5.频率与概率。
6.定量资料、定性资料、等级资料。
二、研究设计
1.实验研究设计:基本概念、基本要素与基本原则。常用设计方案:完全随
机设计、配对设计、随机区组设计、析因设计。
2.调查研究设计:基本概念、基本抽样方法、样本量估算。
三、统计描述
(一) 定量资料统计描述
1.集中趋势的描述:算术平均数、几何均数、中位数
2.离散程度的描述:极差、四分位数间距、方差、标准差和变异系数。
(二) 定性资料统计描述
1.常用相对数指标:率、比、比例。
2.应用相对数指标应注意的问题。
3.率的标准化。
(三)统计图表
四、常见概率分布
(一)正态分布
1.正态分布的基本特征、正态分布曲线下的面积分布规律、标准正态分布。
2
2.医学参考值范围。
(二)二项分布
1.二项分布的概念和特征。
2. 二项分布的应用
(三)Poisson 分布
1.Poisson 分布的概念和特征。
2.Poisson 分布的应用。
五、统计推断
(一)参数估计
1.抽样分布与抽样误差:样本均数的抽样分布与抽样误差、样本率的抽样分
布与抽样误差。
2.总体均数的估计:t 分布、总体均数的点估计与区间估计。
3.总体率的估计:总体率的点估计与区间估计。
(二)假设检验
1.假设检验:概念、基本步骤、两类错误及注意问题。
2.t 检验:单样本均数的 t 检验及应用条件、配对样本均数的 t 检验及应用
条件、两独立样本均数的 t 检验及应用条件。
3.方差分析:方差分析的基本思想与应用条件、完全随机设计资料的方差分
析、随机区组设计资料的方差分析、多个样本均数间的多重比较。
4.
2
检验:四格表资料的 检验与应用条件、配对四格表资料的 检验
2 2
检验与应用条件、多个样本率的多重比较。
与应用条件、行列表资料的
2
5.基于秩次的假设检验方法:基本思想、数据特点。
六、直线回归与相关
(一) 直线回归
1.直线回归概念、回归参数的估计、回归模型及参数的假设检验、应用条件。
2.直线回归的应用及应用中注意事项。
(二)直线相关
1.直线相关系数的意义及假设检验、应用条件。
2.Spearman 相关。
3
七、多元统计分析方法
(一)多重线性回归
1.回归模型基本思想、参数估计及假设检验。
2.回归模型的变量筛选。
3.回归模型的用途及注意事项。
(二)Logistic 回归
1.Logistic 回归模型基本概念。
2.Logistic 回归系数的流行病学意义。
3.回归模型的用途及注意事项。
(三)生存分析
1.生存分析基本概念。
2.生存曲线估计方法及比较。
3.Cox 回归模型基本概念、用途及注意事项。
参考书建议:《卫生统计学》(主编:李晓松,第 8 版,人民卫生出版社)
4