2021年湖南师范大学《数学分析》硕士研究生入学考试考研大纲

 您现在的位置: 考博信息网 >> 文章中心 >> 考研复习 >> 专业课 >> 正文 2021年湖南师范大学《数学分析》硕士研究生入学考试考研大纲

考研试卷库
新闻资讯
普通文章 西南政法大学2012考博报名/考试地点变更
普通文章 武汉科技大学2012博士研究生招生报名
普通文章 考博顺利通过考试须知
普通文章 【考博】博士生入学考试十大必杀技-考博
普通文章 考博成功的因素-考博信息网
普通文章 考博专业课复习应当如何进行-考博信息网
普通文章 考博选择专业与学校的原则和策略-考博信
普通文章 考博要做的准备工作有哪些-考博信息网
普通文章 重庆大学2012年“申请-考核制”考博招生
普通文章 【考博】博士生导师的选择和首次联系-考
调剂信息
普通文章 北方工业大学机电工程学院自动化系2012
普通文章 华南师大光学、光学工程、材料物理与化
普通文章 关于报考中科院大气物理研究所2012年硕
普通文章 广西中医学院2011年硕士研究生调剂信息
普通文章 广西工学院2011年硕士研究生调剂信息公
普通文章 【广西工学院】2012年考研调剂信息
普通文章 【桂林医学院】2012年考研调剂信息
普通文章 广西艺术学院2012拟接收硕士研究生调剂
普通文章 江西科技师范学院2011年硕士研究生调剂
普通文章 【江西科技师范学院】2012年考研调剂信
2021年湖南师范大学《数学分析》硕士研究生入学考试考研大纲

2021年湖南师范大学硕士研究生入学考试自命题科目考试大纲

考试科目代码:723            考试科目名称:数学分析

一、考试内容及要点

1、极限论

考试内容

①  各种极限的计算; ② 单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理等实数基本理论的灵活应用; ③ 连续函数特别是闭区间上连续函数性质的运用; ④ 极限定义的熟练掌握等.

考试要点

(1)能熟练计算各种极限,包括单变量和多变量情形.

(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理进行各种理论证明.

(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连续函数的性质,能利用这些性质进行计算和证明.

(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.

2、单变量微分学

考试内容

①     微分中值定理(包括Roll定理、Lagrange中值定理、Cauchy中值定理等)

的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证明等); ② Talor公式的灵活运用(包括用Lagrange余项形式证不等式、用Peano余项形式估计阶以及求极限等);③ 各种形式导数的计算; ④ 导数的定义和运用等.

考试要点

(1)熟练掌握微分中值定理,包括Roll定理、Lagrange中值定理、Cauchy中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.

(2) 熟练掌握Talor公式的条件和结论,并能做到灵活运用,尤其是利用Lagrange余项形式证不等式、Peano余项形式估计阶以及求极限等.

(3)熟练掌握复合函数导数的计算和高阶导数的计算.

(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握利用导数定义进行证明或计算.

3、单变量积分学

考试内容

①     各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧;  ② 广义

积分的计算和敛散性判别; ③ 定积分的定义和性质的灵活运用等.

考试要点

(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.

 (2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混合型广义积分的敛散性判别,并能进行理论证明.

 (3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.

4、级数论

考试内容

①     各种数项级数尤其是正项级数的敛散性判别;② 数项级数的性质

③ 函数列和函数项级数的一致收敛性判别,给定函数Fourier级数的展开和特殊点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用 ;⑤幂级数的收敛性和展开等知识的熟练掌握.

考试要点

(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.

(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束的常规性质.

(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优级数判别法、Abel判别法、Dirichlet判别法判别函数项级数的一致收敛性,熟练掌握给定函数的Fourier展开,能给出Fourier级数在特殊点的收敛性.

(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、可积性和可微性,能利用这些性质进行理论证明.

(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,并掌握一些特殊幂级数和函数的求法.

5、多变量微分学和参变量积分

考试内容

① 可微的定义; ② 求复合函数以及隐函数的偏导数; ③  多元函数极值理论; ④ 参变量积分的一致收敛性判别; ⑤  参变量积分的计算; ⑥ 参变量积分一致收敛性质的运用等.

考试要点

(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微性,掌握多元函数可微、连续、可求偏导之间的关系.

(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或方程组确定的隐函数偏导的计算.

(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..

(4)熟练掌握含参变量广义积分一致收敛性的判别.

(5)熟练掌握含参变量常义积分和广义积分的计算.

(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,并能利用这些性质进行计算和证明..

6、多元积分学

考试内容

①二重积分、三重积分的计算; ② 格林公式、高斯公式的灵活运用;③两类曲线积分、两类曲面积分的计算;④ 各种积分之间的相互关系等

考试要点

(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其是极坐标、球坐标变换.

(2)熟练掌握Gree公式、Gauss公式的条件和结论.

(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.

(4)掌握平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,熟练掌握利用Gree公式求第二类曲线积分、利用Gauss公式求第二类曲面积分、利用Stokes公式求空间第二类曲线积分..

二、参考书目

[1]     复旦大学数学系编. 数学分析. 高等教育出版社, 1979

[2]     华东师范大学数学系编.  数学分析 高等教育出版社, 2001

[3] 张学军、王仙桃等编. 数学分析选讲. 湖南师范大学出版社,2012

 

 

 

考博咨询QQ 135255883 考研咨询QQ 33455802 邮箱:customer_service@kaoboinfo.com
考博信息网 版权所有 © kaoboinfo.com All Rights Reserved
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载或引用的作品侵犯了您的权利,请通知我们,我们会及时删除!