×ÊÔ´´óС£º0.1-10.0 MB
×ÊÔ´ÀàÐÍ£ºrar
·¢²¼Ê±¼ä£º2018-9-1 10:30:26
×ÊÔ´ÆÀ·Ö£º¡ï¡ï¡ï
×ÊÔ´¼ò½é£º2014ÄêÕã½¹¤ÉÌ´óѧ822ÐźÅÓëϵͳ¿¼ÑÐÕæÌ⿼ÑÐÊÔÌâ˶ʿÑо¿ÉúÈëѧ¿¼ÊÔÊÔÌâ
ffirrffi*# 2014+ff,tfitrf;t^#+ifrEt# (B)# €ifrt4E: 822trEtsKqf ,H.j):150r) +ifrFJlnl:3,J'Ff ( 6(t) , g,(t) +nl#-z\+{n$}ffgrry.nBry, s(t), a(t)fiJ#.^+inp/lffirlft, ! a, ! *#J*^+ffi ryAD,! rpt! 7 €*zr+fi#qtD" ) -. E+i.tHff (€4'ffistl, X7sh) r. I*fr2 + 6yd1l1at z. a*E.fQ)= ej' , 86. lftha tfriJftIt/a? 3. x,(/) = e-2'e(t) , xr(t)= ea'e(t), 6 x,(/)* xz(t). 4. F(jat)=, -l , , *H FourieriEA&. \d + Jo) 5. * f ftl =sin2n(t -2) HtFourierAffr. n(t -2) 6, *.eIf (3t-z) 6g6f e) F(ia);fi'rourierA?A. 7. e*trf (t)= srp)+ 6(t), ES f (t) , e.f Qt)ffi\ft,. t. *F(jar) =1"@+ 1)- s(@-t!lp-i" HtFourieriEqf4. e. r0. Eff* Rfrtlfu9l8w.hll(s)= J#T, *tJffi1a4tfr,ft6fteft.. 1r. 12. EWR.fTrtJf (k)+>F(z), *h(k)=fo^ f (m)WIzN&" m=0 13.Efix(z)= #,(%tkl'z), 8.z frNWx(n)" ERtrtrEffi'ftL, trEifr+Lfr:,*. ffirF(+zF.)
ËüÊÇÈ«¹úÑо¿ÉúÈëѧ¿¼ÊÔ¿¼¹ýµÄÕæÌâÊÔ¾í£¬ÊôÒѽâÃÜÐÅÏ¢£¬¶ÔÓÚ±¨¿¼Ïà¹Ø×¨Òµ¿¼ÉúÀ´Ëµ£¬Í³¿¼×¨Òµ¿Î£¨ÒµÎñ¿Î£©¿ÆÄ¿¿¼ÑÐÕæÌâ¶ÔÓÚרҵ¿ÎµÄ¸´Ï°ÊǷdz£ÖØÒªµÄ£¬ÒòΪͨ¹ýÑо¿ÕæÌâ³ýÁËÄÜÁ˽⵽ʲô֪ʶµã×îÖØÒª£¬¿¼ÄÄЩÌâÐÍÖ®Í⻹ÄܸøÎÒÃÇ·´Ó³³öÀÏʦ³öÌâµÄÄѶÈÈçºÎ£¬¿¼ÊÔ¿¼µã¼°Öص㷶ΧÓÐÄÄЩ£¬Ã¿¸ö֪ʶµãµÄÀúÄê³öÌâÆµÂÊ£¬Ã¿¸öÕ½ڵķÖÖµ±ÈÖØ£¬¸÷¸öÕ½ڵijöÌâ±ÈÖØ£¬Ã¿Äê¶¼Òª·´¸´¿¼µÄ֪ʶµãµÈµÈ¡£¿¼ÊÔÕæÌâµÄÖØÒªÐÔÊÇÈκεÄϰÌâ×ÊÁ϶¼¸ß£¬±ÈÆðÍøÉÏÁ÷ÐеÄËùν¡°¸´Ï°Ìâ±Ê¼Ç½²Ò塱£¨ÉÙÊý³ýÍ⣬´ó²¿·Ö¶¼ÊÇÒÔͬһ×ÊÁϹÚÒÔ²»Í¬Ñ§Ð£Ãû³ÆÃ°³äµÄ×ÊÁÏ£©£¬ÕæÌâÕæÊµÐԸߡ¢ÇþµÀȨÍþ¡¢ÊÔÌâÔ°æÉ¨Ãè±£Ö¤ÇåÎú¡£ÔÚ¿¼²©ÐÅÏ¢ÍøµÄ¿¼ÊÔ×ÊÁÏÌåϵÖУ¬Ò²ÊǰÑרҵ¿ÎÕæÌâ×÷Ϊ×îΪºËÐÄ¡¢×îÎªÖØÒªµÄ×ÊÁÏÌṩ¸ø´ó¼ÒµÄ¡£
|