重庆交通大学博士研究生入学考试数值分析考试大纲
发布日期:2012-08-10
重庆交通大学博士研究生入学考试数值分析考试大纲
一、数值计算中的误差
1、了解误差的种类,清楚在数值计算中必须研究的两类误差——截断误差和舍入误差;
2、掌握近似数有效位数的概念;
3、理解绝对误差、绝对误差限、相对误差和相对误差限概念;
4、掌握和、差、积、商的误差估计;
5、了解数值计算中应该注意的问题。
二、非线性方程数值解
1、掌握二分法求解非线性方程;
2、理解简单迭代法求解非线性方程;
3、掌握Newton迭代法求解非线性方程;
4、掌握Aitken迭代法求解非线性方程;
5、掌握弦截法求解非线性方程;
6、理解迭代收敛阶的概念;
7、迭代收敛判定定理。
三、解线性方程组的直接法
1、掌握Gauss消元法和列主元消元法解线性方程组;
2、掌握超松弛(SOR)迭代法解线性方程组;
3、掌握追赶法解三对角型线性方程组;
4、掌握平方根法解系数矩阵是对称正定阵或对称阵的线性方程组;
5、掌握线性方程组直接解法的计算量估计;
6、掌握向量和矩阵的范数、矩阵条件数的计算以及方程组的性态;
7、迭代收敛的判定。
四、解线性方程组的迭代法
1、掌握Jacobi迭代法解线性方程组;
2、掌握Seidel迭代法解线性方程组;
3、掌握SOR法解线性方程组;
4、迭代格式收敛的条件;
5、迭代格式的误差估计。
五、插值法
1、掌握Lagrange插值法及其余项表达式;
2、掌握差商、Newton插值法及其余项表达式;
3、掌握差分、等距基点的Newton前插公社和后插公式;
4、Hermite插值法及其余项表达式;
5、三次样条插值(M-表达式和m-表达式不用背)。
六、最佳平方逼近
1、理解函数逼近、内积空间与正交多项式基本概念,掌握正交多项式的基本性质;
2、掌握Chebshov正交多项式及其基本性质;
3、掌握函数的最佳平方逼近逼近;
4、掌握函数拟合的最小二乘法。
七、数值积分与数值微分
1、等距基点求积公式、代数精度、误差估计和稳定性;
2、掌握复化求积公式;
3、掌握变步长积分法;
4、掌握Romberg求积公式;
5、Gauss型求积公式及其稳定性;
6、数值微分。
颜庆津,数值分析,北京航空航天大学出版社
2013年福建师范大学考博英语专业课考博试题:http://www.kaoboinfo.com/shijuan/school/408061.html 考博专业课真题试卷下载地址85.html
2013年大连理工大学考博英语专业课考博试题:http://www.kaoboinfo.com/shijuan/school/408061.html 考博专业课真题试卷下载地址86.html
2013年复旦大学考博英语专业课考博试题:http://www.kaoboinfo.com/shijuan/school/408061.html 考博专业课真题试卷下载地址87.html
2013年湖南大学考博英语专业课考博试题:http://www.kaoboinfo.com/shijuan/school/408061.html 考博专业课真题试卷下载地址88.html